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Abstract—In biomedical engineering, deep neural networks
are commonly used for the diagnosis and assessment of
diseases through the interpretation of medical images. The
effectiveness of these networks relies heavily on the availability
of annotated datasets for training. However, obtaining
noise-free and consistent annotations from experts, such as
pathologists, radiologists, and biologists, remains a significant
challenge. One common task in clinical practice and biological
imaging applications is instance segmentation. Though, there
is currently a lack of methods and open-source tools for the
automated inspection of biomedical instance segmentation
datasets concerning noisy annotations. To address this issue, we
propose a novel deep learning-based approach for inspecting
noisy annotations and provide an accompanying software
implementation, AI’Seg, to facilitate its use by domain experts.
The performance of the proposed algorithm is demonstrated
on the medical MoNuSeg dataset and the biological LIVECell
dataset.

Clinical relevance— The contributed AI>Seg method enables
experts, such as practicing clinicians or biologists, to review
noisy annotated datasets using a novel automated inspection
algorithm embedded in a software package.

I. INTRODUCTION

Recent advances in Deep Learning (DL) have led to im-
pressive results in various computer vision applications [1],
[2]. Deep Neural Networks (DNNs) can be used for accurate
function approximation to solve complex tasks, i.e., assisted
diagnosis in pathology [3], MRI image segmentation [4],
analysis of high-throughput assays [5], or microscopy image
processing [6].

However, training state-of-the-art supervised DL pipelines
requires the annotation of datasets by specialists. According
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to [2], [7], [8], obtaining annotated datasets is a current chal-
lenge in DL because it is demanding, laborious, expensive,
and necessitates domain expertise.

Since annotation is a workflow where different people with
varying perspectives interact and experts’ time is usually
scarce, noisy annotations' pose an issue [9], especially when
having small datasets like in biomedicine [10]. First, noisy
annotations can impede the training of DNNs [9], [11], [12].
Second, in the presence of noisy annotations, quantitative
metrics, i.e., in terms of DNN model performance [12], can
produce misleading results, which may lead to not selecting
the best model.

There are methods for automatically inspecting noisy
annotations for classification or semantic segmentation tasks.
However, the complexity of an inspection algorithm suited
for noisy instance segmentation datasets is higher. Instances
must be checked on a detection level and regarding their
shape. To the best of our knowledge, there is no method for
automatically inspecting noisy annotated instance segmenta-
tion datasets commonly used in biomedical applications. A
tool with Graphical User Interface (GUI) is needed to make
emerging methods usable for inspecting noisy annotated
image datasets. However, there is a lack of non-commercial
open-source software packages that integrate algorithms suit-
able for the automated inspection of instance segmentation
annotations.

Therefore, we propose an approach utilizing uncertainty-
aware DNNs to provide users with an ordered sequence
of images that may contain noisy instances. Furthermore,
our proposal yields a rating per instance to assist users
by highlighting the most critical instances per image. To
evaluate our approach, first, we simulate common types
of annotation noise using two different biomedical image
datasets (MoNuSeg [13] and LIVECell [14]). Second, the
pipeline is evaluated using the noisy simulated datasets.
Finally, the method is integrated into the open-source annota-
tion tool KaIDA [8] as the plugin AI?Seg. Hence, we enable
the usage of our newly developed method by researchers.

Our contribution is organized as follows: Related work
is presented in Section II. A description of our developed
method is shown in Section IIl. The results are presented
and discussed in Section IV. Finally, Section V summarizes
the conclusions and provides an outlook for future work.

Deviating from the understanding of noise in measurement and control
theory, namely stochastic deviations, the term “noise” is used as a collective
term for annotation errors, biases, or similar effects.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Types of Annotation Noise in Instance Segmenta-
tion. Considering annotation noise regarding instance seg-
mentation, as depicted in [11], a synthetic image (a), the
corresponding ground truth annotation (b), and various types
of annotation noise (c-k) are given. Different colors encode
instances. White line patterns indicate affected instances.

II. RELATED WORK

According to Karimi et al. [9], annotation noise can be
divided into 1) variability regarding the annotation of a single
expert (intra-annotator variability) and ii) variability between
different experts (inter-annotator variability). When a divi-
sion of labor is made during the annotation of a dataset, there
is a risk of finding different annotation styles in the merged
final dataset. For example, decision boundaries may differ
between experts, such as when one pathologist annotates
the edge of a cell and another pathologist does not mark
this area. Fatigue, no defined annotation policy, pressure of
time, varying qualifications of experts, or different hardware
like varying monitor settings can be reasons for annotation
variability. In addition, noisy annotations can occur when
using the pre-annotation functionality of annotation tools.
Issues may appear if a user only adheres to the initial an-
notations determined by a pre-annotation algorithm without
controlling them. In the following, this work will focus on
intra-annotator variability.

We base our work on the categorization of types of
annotation noise given in [11] (cf. Figure 1). For instance,
the shape of instances can be “oversized”/*undersized”, only
a “contour”, “forgotten”, or an “approximation” of the real
one. In addition, “merging” two instances, “splitting” a single
instance into two, small erroneous “jitter” instances, and
“holes” within an instance are issues in practical projects.

Several works highlight that these noisy annotations can
negatively affect the performance of DNNSs, such as in
classification [12], semantic segmentation [15], [16], tracking

of cells [17], or instance segmentation [11]. When training
a DNN, similar patterns in an image, e.g., a bright cell
surrounded by a black background, but inconsistent anno-
tations, would yield diverging optimization steps. Besides,
it may cause the selection of suboptimal DL models, e.g.,
metrics are unreliable in the validation step dealing with
noisy annotations [12]. Specifically, in [9], [10], the authors
argue that noise has an enormous impact on small-scale
datasets, as is often the case in biomedicine.

The reviews in [9], [18] discuss noisy annotations in
DL. In general, two approaches exist for handling noisy
annotated datasets: (i) directly detecting noisy annotations
and correcting them or (ii) mitigating the effects of noisy
annotations during the training of a DNN [19], [20]. As we
focus on the detection of noisy annotations, related work of
this strategy is presented in the following.

The CleanNet proposed by [21] involves computing a
single feature vector per image and comparing it to a
representative feature vector for a specific class. This method
enables the detection of noisy annotations characterized by
substantial deviations of feature vectors from the correspond-
ing ones of the representative class. In the case of rank prun-
ing [22], the DNN output is considered for detecting noisy
annotations. The authors assume that probability distributions
can be derived from network outputs (via softmax or sigmoid
functions) and that a correct annotation is associated with a
specific output.

Corbiere et al. [23] argue that DNNs often lack calibration
in their outputs and are too confident in failure cases. To
overcome this problem, Kohler et al. [24] suggest using
uncertainty-aware DNNs. Methods are, for instance, Monte
Carlo dropout [25] to approximate Bayesian inference or Test
Time Augmentation (TTA) [26] using augmented versions of
an image to estimate the uncertainty. However, all methods
mentioned above designed for classification problems are not
transferable to instance segmentation, as the output in seg-
mentation tasks is pixel-wise. In [15], we have already shown
an automated approach suited for semantic segmentation. It
is based on the idea of inspecting noisy datasets by searching
for samples that show a large discrepancy between the noisy
annotation and the DNN prediction, under the requirement
that the prediction is confident.

Regarding tools, the open-source software CVAT [27]
allows one to manually flag noisy samples by re-inspecting
all images. However, only commercial software packages,
such as hasty.ai [28], support an automated inspection. The
tool hasty.ai integrates the idea of displaying images with
wrong predictions to reveal noisy annotations. Nevertheless,
this is only a beta function that is still under development.
It lacks an open-source algorithm and a detailed method
description.

In summary, two elements are missing in related work: i)
an automated inspection pipeline for instance segmentation
datasets and ii) an implementation of this method in an
annotation tool to make it applicable to experts.
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Fig. 2: Overview. A clean dataset D is corrupted, leading to a noisy dataset D controlled by (. Subsequently, a DNN
is trained yielding finsp ON D, which is used for the automated inspection. The inspection algorithm yields an ordered list
Amsp/an ordered rating list ./\/i,mﬁng. Using this information, users can specifically check the annotations yielding the inspected
dataset Di,sp. The approach is evaluated using the AUC criterion.

Algorithm 1 Inspection Algorithm

Require: D, finp, @,y
Ensure: -Ainsp7 { ++»/Vi rating, - - }
fori=1,...,N do
Vi, 03 < predict_wuncertainty(finsp,Xs)
S; < state_assignment(y;,¥i)
Ni rating < image_wise_inspection(S;,¥i, ¥i, i, @, y)
end for
Aingp ¢ overall_inspection({...,Nj rating,---})

I1II. MATERIAL AND METHODS
A. Overview

Figure 2 displays an overview of our developed pipeline
for the automated inspection of noisy instance segmentation
datasets. First, a noisy dataset Dis generated from the dataset
D, where the annotations are assumed to be not noisy by
simulating the annotation noise. The parameter 5 € [0, 1]
controls the ratio of noisy instances per image. We refer to
the types of annotation noise presented in [11] (cf. Figure 1,
here B = 0.2 is illustrated). Second, a DNN fi,, is trained
on the noisy dataset D to enable the subsequent automated
inspection. It is assumed that most of the dataset is annotated
correctly (8 < 0.5). Details regarding the algorithm are
discussed in Section III-B. The result of the automated in-
spection algorithm should yield an ordered list Ajygp, starting
with images that contain many noisy annotations and ending
with images that are mostly annotated correctly. In addition,
the second output is a rating list ./\/;}ra[ing containing score
predictions 7; ; € [0,1] for each instance j given in the
image ¢ regarding their noise affection. Both information
can be utilized for the assisted check by the user. After
the assisted correction, the inspected cleaned dataset Diygp is
obtained. Furthermore, we evaluate our pipeline considering
the initial clean dataset D, the noisy dataset 15, and the
predictions Ainsp/ /\/,»Jaﬁng in terms of the Area Under Curve
(AUCQC) score. Details in terms of our evaluation method are
explained in Section III-C.

B. Inspection Algorithm

The pseudocode of our inspection algorithm is depicted
in Algorithm 1. First, the trained DNN fi,p is used to gener-
ate an instance segmentation prediction y; given the image
x; € D in order to compare it with the noisy annotation
yi. Generally, two challenges occur in a naive comparison
approach: i) A prediction can contain wrong instances. ii)

There can be the case of no matching between y; and y;,
but considering the instance size may be worthwhile rather
than treating the mismatch independently of the size.

To investigate the potential of using the network’s
uncertainty in our approach, we use an uncertainty-
aware DNN predicting the uncertainty w; in parallel
(cf. predict_w_uncertainty). TTA is used since the
method is agnostic of the DNN. Inspired by the work in [29],
the uncertainty of a single instance j is determined by cross-
comparing the matching in each TTA prediction. Subse-
quently, the state_assignment method compares the
noisy annotation y; € D and prediction y,. We distinguish
between the three states of instances j in y;/y;: i) odd
(intersection between prediction y,; and annotation y;, but
the same shape), ii) additional (instance only present in
the annotation y;) and iii) missing (instance only present
in the prediction y;). The states are summarized in the list
S;. Afterward, in the image_wise_inspection, the final
rating J\/},rating is obtained. In general, using Intersection
over Union (IoU) between annotated and predicted instances,
we compute a mismatch score (1 — IoU) per instance. To
consider the size of an instance in the case of IoU = 0
(additional,missing), scaling the mismatch score is enabled.
The size parameter 7 can be used to scale the mismatch
score w.r.t. the segment area by the maximum size of all
given instances (y = 0) or the maximum size of not
matching instances (y = 1). In addition, the final score
per instance 7; ; is a weighted sum of the mismatch score
and certainty of the predicted instance j controlled by an
uncertainty weighting parameter o € [0,1] to focus on
confident predictions. The parametrization @ = 0 means
uncertainty is not taken into account. The inspection order
regarding all samples, expressed by Aiyp, is obtained by
averaging all inspection scores 7; ; per image, referred to as
overall score (cf. overall_inspection). The parameters
a,~ and their impact on the inspection performance are
explored in Section IV-C.

C. Evaluation

To evaluate our presented method for automated instance
segmentation inspection, we compute the Receiver Oper-
ating Characteristic (ROC). The ROC allows us to avoid
defining a fixed threshold for 7;; to mark an instance
as noisy. Assuming that the initial dataset D is correct,
we can determine whether an instance is noisy or not by
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Fig. 3: Biomedical Example images

comparing the annotations of the initial dataset D and the
noisy dataset D. It applies n; ; = 0 for the case of no
deviations between the annotations and conversely n;; =
1 for all deviations. Accordingly, the True Positive Rate
(TPR) describes a successful detection of a noisy instance.
In contrast, the False Positive Rate FPR characterizes the
case of classifying a correct instance as a noisy one. The
AUC = f01 TPR(FPR) dFPR combines both metrics and can
be used to assess the quality of our annotation inspection.
Note that an AUC > 0.5 characterizes better performance
compared to random classifiers, while an AUC < 0.5 denotes
classifiers that consistently indicate incorrect inspections. We
empirically define a failed inspection for AUC < (.55 since
the triggered inspection warnings seem arbitrary and are of
little help from the user-experience perspective. In addition,
we denote AUC™ for the performance score using the optimal
parameters o, y* = argmax, 3 AUC(a, 3) determined by
a grid-search parameter study.

IV. RESULTS
A. Datasets

Two biomedical datasets are used to evaluate our pro-
posal (cf. Figure 3). The MoNuSeg dataset [13] con-
tains hematoxylin-eosin-stained histology images taken from
seven different organs. This dataset aims to identify cell
nuclei in the different tissue images. It contains 592 cropped
images of size 256px X 256px. In addition, the LIVECell
dataset [14] published by Sartorius, which includes eight
different cell structures, is investigated. However, to reduce
the computational cost, only a fraction (SkBr3 cells) of all
samples is considered in our work. The extent of the reduced
dataset is 2640 cropped samples of size 256px X 256px.

B. Implementation

1) DL: Each raw image is normalized to a range [0,1]. A
U-Net [30] is utilized for predicting Euclidean distance maps,
which are subsequently post-processed by a seed-based wa-
tershed algorithm to obtain instances [31]. We implement
the DNN using the DL framework PyTorch Lightning. The
Smooth L1 loss combined with Adam optimizer is consid-
ered for the training. Thereby, learning rate scheduling and
early stopping are taken into account. The train-validation

split is done randomly using a split ratio of 80/20. Addition-
ally, we expand the training dataset using data augmentations
(flipping, rotate/shift/scale, brightness/contrast adjustment)
provided by Albumentations [32]. Finally, hyperparame-
ters are determined using random search. The training is
performed on SLURM cluster nodes equipped with four
NVIDIA A100 Tensor Core GPUs and Intel Xeon Platinum
8368 CPU. All training runs are repeated five times using
different random seeds.

2) AI?Seg: The implementation of AI?Seg is embedded
in the python-based tool KalDA [8] designed for assisted
annotation by adding a new plugin. The GUI enables the
direct application of our proposed method and is based on
Qt. In addition, a user manual (README file) is provided to
increase usability. The open-source software is publicly avail-
able at https://git.scc.kit.edu/scl357/kaida
in the form of a pip package. AI?Seg is tested for various
operating systems (including Windows 10 and Ubuntu 20.04)
using python 3.8.5. In addition, a video to illustrate the
workflow of our developed inspection pipeline is available
at https://osf.io/t8zx7/.

Figure 4 displays the developed front-end for inspecting
noisy instance segmentation datasets. The noisy user anno-
tation, the DNN prediction, and an inspection visualization
containing markings of potential noisy annotations are dis-
played. The user can decide whether to keep the annotation,
accept the DL prediction, or re-annotate it. Based on the
overall scores, the user can start with images that contain
the noisiest predicted instances.

C. Inspection Performance and Discussion

Table 1 shows the results of the proposed evaluation
(cf. Section III-C) for the two introduced datasets. The
performance is evaluated for the mentioned types of an-
notation noise and various ratios 8 € {0.10,0.25,0.50}
of affected instances. The mean values of five different
initialized and trained DNNs are shown. We compare the
performance of the naive approach (AUC) and the elaborated
approach considering the uncertainty of predictions/adapted
size weighting (AUC™).

For 48 of 54 cases of different annotation noise types,
the inspection performance is above the defined threshold
AUC > 0.55. Therefore, our proposed AI?Seg approach can
be a helpful tool for users to detect/correct noisy annotations
in most cases. Further, for most noise types, better results
can be obtained with the advanced approach indicated by
AUC* > AUC. The results are consistent with the theoretical
limits discussed when relying only on comparison and DNN
prediction to obtain noisy instances. Taking uncertainty as
well as size scaling into account is often meaningful. In
addition, the optimal parameter setting depended on the noise
type. Therefore, the parameters can be selected interactively
in the GUL

Failures can occur in the case of 4 = 0.5, which violates
our assumption that most instances are correct.

In addition, there is no clear relationship between
AUC/AUC* and . On the one hand, this can be explained by



TABLE I: Inspection Performance. The inspection perfor-
mance is evaluated for different types of annotation noise
and noise ratios [ regarding the datasets MoNuSeg and
LIVECell. The metric AUC indicates the case of no un-
certainty consideration/no size weighting. In contrast, AUC*
shows the results of the optimal setting (a*,~y*) determined
by a parameter study. A bold marking visualizes superior
performance (AUC* > AUC) using a more elaborated
inspection method. Moreover, gray boxes (| ) indicate cases
of failing inspection (AUC < 0.55).

. MoNuSeg LIVECell
Noise Type B AUC AUC™ AUC AUC
0.10 0.728 0.730 0.773 0.776
Oversized 0.25 0.643 0.644 0.757 0.761
0.50 0.392 0.392 0.608 0.618
0.10 0.823 0.837 0.931 0.945
Undersized 0.25 0.812 0.819 0.935 0.948
0.50 0.744 0.744 0.934 0.942
0.10 0.874 0.879 0.845 0.860
Contour 0.25 0.791 0.793 0.812 0.821
0.50 0.614 0.628 0.595 0.635
0.10 0.835 0.836 0.753 0.761
Merged 0.25 0.829 0.831 0.754 0.764
0.50 0.824 0.825 0.705 0.710
0.10 0.854 0.871 0.910 0.930
Split 0.25 0.848 0.857 0.909 0.922
0.50 0.811 0.821 0.891 0.905
0.10 0.665 0.665 0.712 0.717
Jitter 0.25 0.776 0.776 0.806 0.806
0.50 0.859 0.859 0.879 0.879
0.10 0.650 0.656 0.696 0.697
Holes 0.25 0.650 0.656 0.704 0.705
0.50 0.648 0.653 0.728 0.728
0.10 0.505 0.505 0.623 0.624
Approximation  0.25 0.515 0.515 0.642 0.643
0.50 0.509 0.510 0.679 0.679
0.10 0.696 0.770 0.736 0.784
Forgotten 0.25 0.652 0.712 0.673 0.725
0.50 0.436 0.457 0.479 0.548

the fact that the DNN used for inspection often degenerates
as the number of noisy annotations increases. On the other
hand, correct instances that are false positives have less
impact on the metric due to a larger number of noisy
instances.

Besides, considering the “approximation” noise type,
which is only a minor deviation compared to the original
clean annotation, the inspection is unsuccessful. Hence, an-
other limitation of our developed method becomes apparent
in the case of minor deviations. Note, however, that the
initial dataset is assumed to be correct overall and annotation
noise is generated only by our simulation. Consequently,
small biases in the results may occur due to possibly noisy
annotations included in the original dataset assumed to be
correct.

V. CONCLUSIONS

Deep neural networks are potent methods for biomedical
image processing. Nevertheless, the challenge of obtaining
noise-free and consistent annotated datasets still remains. In
particular, solutions for inspecting noisy biomedical instance
segmentation datasets are lacking.

We contribute an elaborate approach to overcome this
issue. Our algorithm utilizes an uncertainty-aware deep learn-
ing pipeline and a sophisticated comparison mechanism be-
tween noisy annotations and network predictions. To make it
applicable, we provide the software implementation AI?Seg
integrated into the annotation tool KalDA. Domain experts,
such as biologists or practicing clinicians, can use the tool to
check their annotated dataset, having assistance to increase
the annotation quality in their projects. Our approach allows
users to focus on the noisiest images or instances. Further-
more, we demonstrate the performance of the developed
inspection pipeline using biological and medical datasets,
respectively. Most of the given types of annotation noise can
be managed by our proposal. We discussed the limitations of
our approach in terms of too many noisy instances or noisy
annotations in the assumed clean initial dataset.

Future work should investigate other computer vision
tasks, such as object detection. Here, deep learning archi-
tectures and algorithms need to be redesigned for comparing
noisy annotations with predictions. In addition, a coupling of
our approach with the automated generation of annotations
is of particular interest in the future. Further, testing our
algorithm in other domains, i.e., autonomous driving, is
another open work package. For further establishing the
FAIR (Findable, Accessible, Interoperable, and Reusable)
principles, the developed methods can be combined with
research data infrastructures, e.g., Kadi4Mat [33]. There-
fore, the integration of KalDA in workflow management
systems [34] can improve the usability to capture the whole
research process.
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