
  

  

Abstract— Idiopathic Parkinson's disease (PD) is the second 

most common neurodegenerative disorder worldwide. It affects 

the nervous system, causing motor and non-motor 

symptomatology. However, its clinical diagnosis remains 

dependent on the expertise of clinicians, as perceptual clinical 

scales are often used. Gait stability is one of the most relevant 

motor signs in PD. Nonetheless, it is usually not reported or 

quantified, possibly due to its unclear meaning and the high 

variability of metrics used in the literature. This work aims to 

identify a reliable and objective indicator that clinicians can use 

to assess patients in realistic contexts. We focused on the Largest 

Lyapunov Exponent (LLE), being the most common metric used 

in previous research works to quantify gait stability. The short 

and long-term LLEs were calculated in a group of 34 healthy 

and 42 participants diagnosed with PD. The long-term LLE 

extracted from the chest, right arm and right foot sensors 

showed statistical differences between subjects with PD and 

healthy control (HC) subjects, showing that the HC subjects are 

more stable than PD patients, whereas the short-term LLE 

showed the opposite results. Further investigation is required to 

clarify the reliability of this metric to detect and rate gait 

stability in people affected with PD. 

 
Clinical Relevance— This study is the first step towards the 

identification of an objective methodology to assess gait stability 

in clinical settings. Achieving this goal will contribute to improve 

the understanding and support the diagnosis of gait disorders 

that cause gait stability problems. 

I. INTRODUCTION 

Idiopathic Parkinson’s disease (PD) is a neurodegenerative 
disorder that affects the human nervous system. It is associated 
with neural loss in the substantia nigra of the brain, leading to 
the appearance of intracellular inclusions with aggregates of α-
synuclein, known as Lewy bodies, and dopamine deficiency 
[1]. It is the second most common neurodegenerative disease 
worldwide, which affects about 10 million people, according 
to the World Health Organization (WHO).  

The clinical symptoms of this disease are heterogenous, 
including motor and non-motor signs [1]–[3]. Typically, non-
motor symptoms emerge ten or more years before the actual 
diagnosis of PD, which is usually based on motor symptoms 
in the so-called premotor or prodromal phase. By the time 
motor symptoms show up, 70% of dopaminergic neurons are 
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to be dead [1]. As the disease advances, these symptoms 
increase in frequency and magnitude [4]. An early detection is 
crucial to delay the onset of symptoms and increase the 
patients’ quality of life and survival. The only way to 
accurately diagnose PD is by looking for Lewy bodies in the 
brain by autopsy. Although the existence of several diagnostic 
criteria such as the UK Parkinson's Disease Society Brain 
Bank and the National Institute of Neurological Disorders and 
Stroke (NINDS), as well as follow-up scales like the Hoehn 
and Yahr Scale (H&Y) and the Movement Disorders Society-
Unified Parkinson's Disease Rating Scale (MDS-UPDRS), no 
reliable objective method exists yet. The diagnosis still totally 
depends on the expertise of movement disorder specialists, 
who base their decisions on recognizing some combination of 
cardinal motor signs and responsiveness to medication [5], [6]. 
Even the most complex scale relies on the subjective criterion 
of a clinician, leading to the possibility of getting different 
scores when being evaluated by different specialists. In 
addition, there is also a part of the diagnosis process that 
depends on the patient, e.g., those questions regarding daily 
symptoms and response to treatment [7]. The lack of an 
explicit clinical diagnostic method has been shown to lead to 
about a 25% of diagnosis failure [5]. 

In conclusion, there is a clear need to improve PD clinical 
diagnosis and follow-up methods to make them more objective 
and accurate. The definition of metrics that objectively rate the 
performance of each task evaluated in the aforementioned 
scales may be a first step towards this goal. Although a broad 
spectrum of tasks needs to be covered, this research will focus 
on one important, yet particularly overlooked aspect: the 
dynamic stability of gait. More precisely, this work addresses 
the following scientific question: how is dynamic stability 
affected in PD? 

II. METHODS 

Data from 34 healthy control (HC) subjects and 42 PD 
patients were collected. The experimental protocol was 
approved by the Hospital Universitario Gregorio Marañon’s 
Review Board. People participating in this study met the 
following inclusion/exclusion criteria: PD subjects must be 
between 50 and 80 years old; have the ability to understand 
verbal instructions (score equal to or greater than 24 on the 
mini-mental state examination); have a H&Y score between I 
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and III; preserve the ability to walk at least 10 meters without 
the use of technical aids; be in the off phase of the disease (4 
hours after the last intake of medication); have been diagnosed 
of PD between 2 and 6 years ago; have stable pharmacological 
treatment without changes in the last 3 months. Subjects must 
not have been diagnosed with other types of Parkinsonism, 
have a history of neurological conditions other than PD (e.g., 
Stroke) and/or psychiatric or have undergone surgery for deep 
brain stimulation. HC subjects must have been age matched, 
not present any neurological or neurodegenerative disease, 
mayor health condition, movement disorder or injuries 
affecting movement and be able to walk without at least 10 
meters without assistance. 

The data used in this study was collected during 2016-2020 
at Hospital Universitario Gregorio Marañón, Madrid, Spain. 
The experimental protocol was the following. Prior to the 
experimentation, the participants signed a written informed 
consent, according to the declaration of Helsinki. Afterwards, 
the subject was instrumented with ten inertial measurement 
units (IMUs) (Tech-MCS, Technaid). The location of these 
sensors was the chest, the pelvis (lumbar region), the wrists, 
the thighs, the shanks, and the feet. The participants were 
asked to walk in a straight line for 15m at their self-selected 
velocity, turn 180° and return along the 15m path, three times.  

To assess gait stability, the Largest Lyapunov Exponent 
(LLE) was calculated. LLE is a measure of the rate of 
separation of infinitesimally close trajectories of an attractor. 
An attractor is the reconstructed trajectory of a nonlinear 
dynamic system extracted from a time series (e.g., 
acceleration). LLE was calculated based on Rosenstein’s 
method [8]. First, the attractor dynamics, that is, the evolution 
of the system’s trajectory over time, was reconstructed from a 
time series, which, in this case, was the accelerometer signal 
of the IMUs (see Fig. 1). The reconstruction was carried out 
following Takens’ delay-coordinate embedding technique: the 
delay-coordinate map from a d-dimensional smooth compact 
manifold to Rm, being the embedding dimension (m) > 2d, is a 
diffeomorphism on the manifold. This means that the 
reconstruction from the delayed time series has the same 

behavior as the actual dynamical system [9]. This process is 
common to every nonlinear system analysis. Once the 
trajectory (X) was reconstructed, the LLE was calculated. For 
this matter, the nearest neighbor of each point on the trajectory 
was identified by looking for the point that minimizes the 
distance to the reference point Xi (1), where Xi is the phase 
space vector at discrete time i and di(0) is the initial distance 
from the ith point to its nearest neighbor. ||•|| refers to the 
Euclidean norm.  

                               ���0� = ‖�� − �
̂‖,                              (1) 

Finally, the mean separation of the neighbors was calculated, 
and least squares used to fit a line to the data. The LLE 
represents the slope of this line.  

The data processing protocol was the following. First, each 
trial was segmented to separate the two straight line walks 
from the turn. Then, gait was segmented in steps using the knee 
flexion/extension angles, considering that heel strike occurs at 
the time of maximum extension of the knee. A threshold was 
defined following the strategy proposed in [10] and used to 
detect the peaks of the signal. Each minimum after a maximum 
corresponds to heel strike. After segmenting the data, the first 
and the last steps of each recording were removed, 
corresponding to gait initiation/finalization or turn 
preparation/recovery. Finally, the LLE was calculated. There 
are two types of LLEs, depending on the length of the input 
signal: the short-term and the long-term LLE. In the case of 
gait, the short-term LLE refers to the LLE calculated over 1-2 
strides and the long-term LLE to the one calculated over 4 or 
more strides [11]. In this case, both were calculated. Three 
different observations were considered, corresponding to the 
accelerometer signal in the X, Y and Z directions from the 
IMU data recorded from each of the ten sensors placed on the 
subject’s body. Statistical analyses were performed to evaluate 
whether significant difference exists in the LLE of PD patients 
when compared to HC subjects. In general, nonparametric 
tests were applied since the data did not meet the assumptions 
of normality or equality of variances. Shapiro-wilk and 
Levene’s tests, respectively, were performed to assess these 
two aspects. If both assumptions were met, an independent 
samples t-test was performed. If the normality assumption was 
met, but not the equal variance assumption, the Welch's test 
was performed. When neither of the two premises was met, the 
Kruskal-Wallis test was performed. 

III. RESULTS 

The statistical analysis showed that there is a significant 
increase in the long-term LLE of PD subjects for the chest 
acceleration signal in the Y axis (Fisher’s, p < 0.013), right 
arm acceleration signal in the Z axis (Fisher’s, p = 0.072) and 
right foot acceleration signal in the Z axis (Kruskal-Wallis, p 
= 0.001). No significant differences were found in the long-
term LLE for any other body part or axis. In the case of the 
short-term LLE, a significant decrease was found in the PD 
group for the chest acceleration signal in the X axis (Kruskal-
Wallis, p < 0.015), the lumbar acceleration signal in the Y axis 
(Kruskal-Wallis, p < 0.039), the right arm acceleration signal 
in the X axis (Kruskal-Wallis, p = 0.005), the right shank 
acceleration signal in the X (Fisher’s, p = 0.024) and the Y axis 
(Kruskal-Wallis, p = 0.29), the left arm acceleration signal in 
the X (Kruskal-Wallis, p = 0.034) and Y axis (Kruskal-Wallis, 

Figure 1. Time series used for long and short-term calculation for both 
cohorts. 

 



  

p = 0.013), the left shank acceleration signal in the X axis 
(Kruskal-Wallis, p = 0.001) and the left thigh acceleration 
signal in the X axis (Kruskal-Wallis, p = 0.02), as well as a 
significant increase in the short-term LLE of PD subjects for 
the left foot acceleration signal in the Y axis (Kruskal-Wallis, 
p = 0.002) and the left thigh acceleration signal in the Y axis 
(Kruskal-Wallis, p = 0.015). These results, expressed in terms 
of mean and standard deviation, are summarized in Table 1, 
where significant values are marked with an asterisk and 
highlighted in blue and yellow in the case of a significant 
increase of the LLE of PD with respect to HC and a significant 
decrease of the LLE of PD compared to HC, respectively.  

IV. DISCUSSION 

In this study, we evaluated the effect of PD on gait stability, 
looking for biomarkers capable of objectively assess it 
clinically. 

In the case of the long-term LLE, significant statistical 
difference was only found in three signals: the chest 
acceleration signal in the Y axis, the right arm acceleration 
signal in the Z axis and the right foot acceleration signal in the 
Z axis. As for the short-term LLE, significant differences were 
found in 13 acceleration signals: the right arm in the X axis, 
the right shank in the X and Y axis, the left arm in the X and 
Y axis, the left shank in the X axis, the left thigh in the X axis, 
the left foot in the Y axis and the left thigh in the Y axis. As it 
can be seen, the relevant body parts and directions are different 
for the long and short-term LLE. For the long-term LLE, the 
chest and right arm and foot were the most meaningful 
locations of the IMUs while for the short-term LLE all the 
body parts in both sides of the body were able to classify PD 
patients and HC. Regarding the axis directions, the Z axis was 
the most relevant for the long-term LLE whereas in the case of 
the short-term LLE they were the X and Y axes. These results 
suggest that long and short-term LLE provide different 
information. This hypothesis is in line with authors in [11], 

where they state that the short and long-term LLEs should not 
be treated equally. In this study, the authors suggest that long-
term LLE is a measure of gait complexity while short-term 
LLE is an index of stability. However, in the literature some 
studies use long-term LLE as a measure of gait stability [12]–
[20]. Another difference found between the results of the long 
and short-term LLE is their behavior. We observed an increase 
in the long-term LLE in PD patients with respect to the HC, 
for all the signals that presented significant differences 
between groups. However, for the short-term LLE, contrary to 
our expectations, the observations were mostly the opposite. 
Short-term LLE of HC was significantly higher than that of 
PD subjects’ short-term LLE for 10 out of the 13 signals that 
presented significant differences between groups. These latter 
results suggest that the gait of PD patients is more stable than 
that of HC since a positive LLE indicates that the system is 
chaotic [8], that is, the bigger the value of the LLE, the more 
unstable the gait is. These results contradict those obtained for 
the long-term LLE, which show that PD subjects have more 
unstable gait than HC subjects. This contradiction may be due 
to the fact that the signal used to calculate the short-term LLE 
comes from only one stride, which may be too small to get 
accurate LLE estimations. This leads to another inconsistency: 
it has been acknowledged that issues exist when calculating 
the LLE of small signals, while, at the same time, the short-
term LLE is still the most employed metric in literature. This 
problem has also been identified in a previous study [21] in 
which the authors estimated the minimum number of steps 
needed to obtain a faithful LLE while accurately 
distinguishing between two populations. They observed that at 
least 50 steps are needed to obtain a faithful LLE, and 70 to 
distinguishing between populations. This research highlights 
that calculating the short-term LLE is unreliable, at least in the 
case of gait signals. In our current study, even the signals used 
to calculate the long-term LLE did not reach this reliability 
limit, being 15 the mean number of steps per capture. The high 
standard deviation values obtained (see Table 1), especially in 

TABLE 1. MEAN AND STANDARD DEVIATION (SD) OF THE LLE OF ALL THE SIGNALS ANALYZED. STATISTICALLY SIGNIFICANT VALUES ARE MARKED WITH 
AND ASTERISK AND HIGHLIGHTED IN BLUE AND YELLOW IN THE CASE OF A SIGNIFICANT INCREASE OF THE LLE OF PD WITH RESPECT TO HC AND A 

SIGNIFICANT DECREASE OF THE LLE OF PD COMPARED TO HC, RESPECTIVELY.  

Axis 
Long-term LLE Short-term LLE Body 

segment 

Long-term LLE Short-term LLE 

Healthy Parkinson Healthy Parkinson Healthy Parkinson Healthy Parkinson 

X -0.47 (±1.28) -0.74(±1.58) -2.91 (±3.16)* -3.63 (±3.42)* 

C
h

e
st

 

L
u

m
b

a
r -0.11 (±1.34) -0.58 (±2.03) -2.99 (±3.96) -3.85 (±4.11) 

Y -0.57 (±1.88)* 0.49 (±2.32)* 0.87 (±3.51) -8.16 (±3.65) 1.61 (±2.19) 0.89 (±2.55) 3.15 (±3.95)* 1.35 (±4.18)* 

Z 0.03 (±2.05) -0.02 (±2.31) -3.81 (±3.15) -3.22 (±4.05) -0.63 (±2.)69 -0.49 (±2.66) 0.03 (±3.21) -0.55 (±3.79) 

 Right Left 

X -0.84 (±1.78) -0.83 (±2.04) -2.77 (±3.02)* -3.22 (±3.06)* 

A
r
m

 -0.63 (±1.81) -0.65 (±1.85) -3.03 (±3.13)* -3.44 (±3.30)* 

Y 0.55 (±2.03) 0.87 (±2.41) -3.58 (±2.91) -3.23 (±3.26) 1.11 (±2.54) 0.56 (±2.96) -2.69 (±3.30)* -2.85 (±3.48)* 

Z 1.50 (±2.23)* 1.95 (±2.35)* 2.10 (±3.04) 2.08 -(±3.10) 2.00 (±2.17) 2.44 (±2.42) -2.03 (±3.11) -1.30 (±3.38) 

X -0.48 (±1.75) -0.63 (±1.89) -3.13 (±4.07)* -3.28 (±4.10)* 

T
h

ig
h

 -0.67 (±1.77) -0.67 (±2.06) -3.83 (±4.48)* -3.96 (±4.23)* 

Y -0.28 (±1.75) 0.006 (±2.13) 1.53 (±3.29) 1.31 (±3.76) -0.74 (±2.08) -0.40 (±2.36) 2.13 (±3.34)* 2.59 (±3.73)* 

Z -0.46 (±2.46) -0.49 (±2.34) 1.86 (±4.02) 1.63 (±3.92) -0.36 (±2.52) 0.07 (±2.37) 1.51 (±4.08) 0.89 (±4.21) 

X -0.90 (±1.92) -0.56 (±1.93) -3.98 (±4.64)* -4.24 (±4.71)* 

S
h

a
n

k
 -0.87 (±1.83) -0.85 (±2.05) -3.82 (±4.28)* -4.23(±4.51)* 

Y 0.50 (±2.71) 0.30 (±2.44) 2.72 (±3.95)* -2.65 (±3.66)* 1.22 (±2.62) 0.51 (±2.07) 2.64 (±3.98) 3.04 (±3.79) 

Z 0.18(±1.85) 0.22 (±1.94) 0.30 (±3.32) -0.50 (±3.70) 0.41 (±2.07) -0.15 (±2.39) 1.04 (±3.82) 0.19 (±3.71) 

X 0.23 (±1.84) 0.60 (±1.80) 1.23 (±6.37) 1.18 (±5.70) 

F
o
o

t 

0.09 (±2.55) 0.31 (±2.38) 1.77 (±5.67) 1.86 (±1.93) 

Y 0.65 (±2.14) 0.60 (±2.39) 2.38 (±5.00)* 3.06 (±4.78)* 0.37 (±2.26) 0.50 (±1.96) 3.26 (±4.57)* 3.72 (±4.40)* 

Z 0.28 (±2.39)* 1.07 (±1.68)* 1.58 (±6.27) 0.78 (±7.24) 0.54 (±1.90) 0.91 (±2.23) 3.42 (±5.83) 2.29 (±6.62) 

 



  

the case of the short-term LLE, confirm the unreliability of this 
metric, particularly when the signal is short. Further studies 
ensuring that enough steps are recorded should be carried out, 
thus guaranteeing reliable LLE values. Also, other measures 
of stability should be used or proposed, allowing the analysis 
of gait signals without the constraints of LLE.  

V. CONCLUSION 

This study evaluated gait stability of PD patients and HC 
subjects, using the long and short-term LLE calculated on IMU 
data from straight walking trials, performed by 34 HC subjects 
and 42 PD patients. Acceleration signals in three axis 
directions from 10 different body parts were recorded, 
summing 30 signals analyzed per participant.  

We found that both the long and short-term LLE are 
capable to distinguish between PD patients and HC. In most 
cases, the long-term LLE was higher for the first group than 
for the latter, indicating that gait is more unstable in PD 
patients than in HC. This means that, as expected, PD affects 
gait stability. However, contradictory results were obtained 
with the short-term LLE. Furthermore, it was also observed 
that the LLE is a very sensible metric that can be affected by 
several factors, such as noise and signal length. 

The location of the sensor chosen to calculate the LLE does 
not seem to be trivial and the best location for the purpose of 
assessing gait stability should be furtherly studied. Our 
hypothesis is that, for gait stability evaluation, the best location 
is the trunk, either the chest or the lumbar region. The trunk is 
where the center of mass is usually found and the most stable 
segment during gait. Also, the most relevant axis direction 
should be investigated. Correlation analysis between axes and 
locations can help to approach both issues.  

The reliability of the LLE to assess gait stability should 
also be further studied. Meanwhile, other metrics can be 
explored to support the outcomes extracted with the LLE. 
These may include other nonlinear dynamics features that 
complement the information provided by LLE. In this study, 
only LLE was considered to evaluate gait stability due to its 
extensive usage in the literature, but there are other common 
metrics like the margin of stability, the center of mass 
displacement, etc.  This future validation study will include 
external perturbation to induce unstable gait in HC subjects 
and compare it to their natural gait. Future efforts should also 
aim to find a minimal sensor setup to facilitate its use in the 
clinical setting.  
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