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ABSTRACT 

 
Mild cognitive impairment (MCI) is an intermediate 
stage between healthy aging and Alzheimer’s disease 
(AD), and AD is a progressive neurodegenerative 
disorder that affects around 50 million people 
worldwide. As new AD treatments begin to be 
developed, one key goal of AD research is to predict 
which individuals with MCI are most likely to 
progress to AD over a given interval (such as 2  
years); if successful, these individuals could be 
preferentially enrolled in drug trials that aim to slow 
AD progression. Here we benchmarked a range of 
MCI-to-AD predictive models including linear 
regressions, support vector machines, and random 
forests, using predictors from anatomical and 
diffusion-weighted brain MRI, age, sex, APOE 
genotype and standardized clinical scores. In 
evaluations on 2,448 subjects (1,132 MCI, 883 
healthy controls, 433 with dementia) from the ADNI 
study, models including PCA-compacted features 
achieved a balanced accuracy of 75.3%  (using 
cortical features) and 89.7% using diffusion MRI 
measures on test set, suggesting the added prognostic 
value of microstructural metrics obtainable with 
diffusion MRI. 

 
Index-Terms: Alzheimer’s disease, diffusion tensor 
imaging, MRI, prognosis, machine learning 

 
1. INTRODUCTION 

 
Alzheimer’s disease (AD) is a chronic, progressive 
and irreversible neurodegenerative disorder [1] that 
affects around 50 million people worldwide. It is 
characterized by a decline in memory and other 
cognitive functions. By the year 2050, it is estimated 
that around 30 million new cases will be reported per 
year [2]. As new anti-amyloid treatments are only  
just becoming available for AD, early diagnosis and 
prognosis of AD is of the utmost importance. 

MCI (mild cognitive impairment) is a prodromal 
form of AD, characterized by mild symptoms of  
brain dysfunction. People with MCI can typically 
perform   daily   activities   but   are   more   prone to 

developing dementia eventually [4,5]. People with 
MCI progress to AD at an annual rate of 10-15%; 
approximately 80% of them will have converted to 
AD after six years. There is considerable interest in 
discovering biomarkers from clinical, neuroimaging 
and genetic data that can help to predict which MCI 
subjects will decline to AD [6-7]. 
Among the measures that have been associated with 

faster progression from MCI to AD are: (1) baseline 
clinical scores on standardized tests such as the 
ADAS-Cog, MMSE, and the clinical dementia rating 
(CDR), (2) abnormal accumulation of beta-amyloid 
and tau proteins in the brain or CSF, (3) abnormalities 
in MRI morphometric measures such as hippocampal 
volumes, regional cortical volumes or regional 
cortical thickness, and (4) diffusion MRI metrics that 
examine white matter microstructure; the latter have 
also been found to be correlated with  clinical 
dementia ratings, and with brain amyloid load [2]. 

The recent AT(N) framework [8] for subtyping of 
dementia highlights the value of measuring 
accumulated amyloid and tau proteins in the brain or 
cerebrospinal fluid (CSF), but the high cost, 
invasiveness, and limited availability of PET scans, 
and the invasiveness of lumbar puncture to measure 
spinal CSF, has led to interest in predicting decline 
from MRI-based imaging metrics [3]. Finally, some 
predictive models have used blood and fluid-based 
biomarkers, as well as genotyping for the APOE4  
risk allele, which increases a person’s lifetime risk of 
late-onset AD by a factor of roughly 3 per allele 
carried, depending on their ancestry. Of all these 
biomarkers and predictors, a method is needed  to 
rank their added value, to create a simple prognostic 
model of AD prognosis. 

Many studies have tested machine learning or deep 
learning for diagnostic classification and for 
predicting future progression from MCI to AD using 
various biomarkers. Wolz et al. [9] used support 
vector machines (SVM) and linear discriminant 
analysis (LDA) to analyze conversion of sMCI  
(stable MCI), pMCI (progressive MCI) or HC 
(healthy controls) to AD based on data from 834 
participants in the ADNI study. Cheng et al. [10] used 
domain   transfer   learning   and   SVM   on    ADNI 
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(N=202) and predicted MCI-to-AD conversion with 
79.4% balanced accuracy using derived measures 
from MRI, PET, and CSF. Ewers et al. [11] achieved 
prediction accuracy of 64.6% for MCI to AD 
conversion based on CSF and neuropsychological 
tests in 182 ADNI participants. 

Zhang et al. [12] proposed multi-modal multi-task 
(M3T) learning where they used the correlations in 
the information available from MRI, CSF data, and 
FDG-PET. Using SVM, they regressed values for 
MMSE and ADAS-cog test scores and classified 
subjects into multiple conversion categories with 
73.9% accuracy. Wee et al. [13] studied correlations 
between various cortical measures using similarity 
maps. Using SVM, they achieved 92.4% accuracy for 
AD classification with an AUC-ROC of 0.974; they 
achieved 75.1% accuracy (AUC-ROC, 0.843) for 
predicting which MCI subjects converted to AD. 

Based on the above studies, we set out to 
benchmark methods for MCI-to-AD conversion 
based on: (1) classical machine learning methods that 
work on tabular data, (2) clinical, demographic, 
genetic, and anatomical and diffusion MRI measures, 
and PCA-based compactions of these measures. 
Given the empirical correlations between 
demographic and genetic information, 
neuropsychological assessments, gray matter features 
extracted from MRI, and various dMRI measures, we 
extracted new features based on the correlations 
between these features and studied their predictive 
accuracy. We aimed to define the added value of the 
imaging metrics, and in particular diffusion MRI, 
which can add a novel metric of white matter 
microstructure not available using standard T1-
weighted anatomical MRI. 

 
2. METHOD 

 
2.1. Dataset Description 

 
We included data from all phases of the Alzheimer's 
Disease Neuroimaging Initiative [14] (ADNI1, 
ADNI2,    ADNI3,   and   ADNI-GO).   ADNI   is    a 
multisite North American study that evaluates various 
biomarkers of AD from multiple neuroimaging 
modalities; molecular and  clinical  biomarkers, 
genetic information, demographics, and 
neuropsychological assessments of AD. A key goal  
of ADNI is to identify biological markers that are 
sensitive to the clinical progression of AD. 
Progression is evaluated using clinical assessments at 
regular intervals, including baseline, 3 month, 6-, 12-, 
24-months and later assessments. 

For this study, a total of 2,448 subjects (1,132 with 
MCI, 883 healthy controls, and 433 with dementia) 
from  ADNI  were  included  (1,161  females,   1,287 

males). 
In the predictor set for MCI-to-AD conversion, we 

considered a range of readily and less  readily 
available features including age at the initial scan, 
sex, number of APOE4 alleles, and results of 
standardized clinical tests including the MMSE, sum-
of-boxes clinical dementia rating (CDR-SB), 
ADAS11 and ADAS13. These features are called raw 
data in this study. The subjects throughout ADNI 
phases are classified as controls, MCI or AD at 
baseline and at 2 year follow-up. Later, models were 
trained to detect which baseline MCI subjects had 
progressed to AD in a span of 2 years after their 
baseline assessment. 

We started our analysis with the raw data and 
analyzed the performance of the model. Later, gray 
matter volumes of cortical regions extracted from T1-
weighted MRI scans using FreeSurfer  were added. 
These features consisted of gray matter volumes for 
regions such as the caudal anterior cingulate, caudal 
middle frontal gyrus, cuneus, entorhinal cortex, and 
fusiform gyrus. 

We also studied the performance of four dMRI 
measures extracted from a set of candidate regions of 
interest in the ADNI3 dataset. The four indices 
measured were standard diffusion tensor indices: 
fractional anisotropy (FA), and mean (MD), radial 
(RD) and axial diffusivity (AxD). The considered 
white matter regions were the fornix/stria terminalis 
(Fx/St), cingulum (CGH), uncinate fasciculus (UNC), 
genus of corpus callosum (GCC), and full white 
matter (FWM). These features were selected based on 
multiple prior studies indicating their association with 
AD [15]. To avoid circularity and data leakage, we 
only included ADNI3 data for the DTI evaluations, as 
the selection of promising DTI features was partly 
based on their association with AD and with clinical 
dementia ratings in ADNI2. 

 
2.2 Algorithms Tested 

 
We employed classical machine learning algorithms 
including support vector machines  (SVMs), K-
Nearest Neighbors (KNN), random forests (RF), and 
linear regression (LR) to classify subjects into 
various categories. Principal components analysis 
(PCA) was used to capture the variance and 
correlation among the features considered. We 
generated new features using PCA and combined 
them with the raw data for further analysis. 

 
2.3. Method 

 
The following algorithm was followed in the 
proposed work: 



1.Collaboration of raw data (Sex, Age, number of 
APOE alleles, test score values on the MMSE, 
CDR-SB, ADAS11, ADAS13) across all phases of 
ADNI. 

2.Computation of gray matter metrics and quality 
checking them. 

3.Collection of previously specified dMRI features  
for ADNI 3 subjects. 

4.Finding null values and imputing them with the 
median value of the group that the person belongs 
to. 

5. Encoding of string values using Label Encoder. 
6.Feature  extraction  using  PCA  and  checking   the 

variance explained by the first principal component. 
7.Merging features (cortical or dMRI) with raw  data 

and newly extracted features. 
8.Resampling of entire data by oversampling the 

under-represented class and rescaling of the entire 
data. Division of dataset in a 7:2:1 ratio for  
training, testing, and validation. 

9. Training models with 70% of data and fine-tuning 
using 10% of the total dataset. 

10. Analyzing performance of the fine-tuned models 
with the test data (20% of the total). 

We examined two types of progression in this study: 
from MCI to AD during a span of two years, and the 
related task of predicting progression of healthy 
controls to MCI or AD over a 2-year interval after 
their first scan. As inputs, we used PCA to calculate 
correlation between features in the following 
combinations: 
● Only Raw data (Sex, Age, number of APOE alleles, 

test score values on the MMSE, CDR-SB, 
ADAS11, ADAS13) 

● Raw data with cortical features extracted using 
FreeSurfer [16]. 

● Raw data with the 4 dMRI measures (AxD, FA, 
MD, RD) from 5 regions of interest. 

 

 
 

Figure 1. a. Correlations are visualized between different pairs of features in the raw data, b. Shows PCA results for 
only the raw data, c. depicts the results when cortical region gray matter volumes were included, d. shows the results 
obtained from a combination of dMRI measures with raw data. 



 
3. RESULTS AND DISCUSSION 

 
The performance of the above-mentioned models was 
analyzed based on parameters including overall and 
balanced accuracy, area under the receiver operating 
characteristic curve (AUC-ROC), and F1 scores, with 
10-cross validation. Figure 1 displays the results for 
PCA analysis where points colored yellow represent 
“Converted” subjects(MCI->AD) whereas points in 
blue color represent “Non-converted” subjects. 
Figure 1(a) displays the correlations in the raw data 
using PCA. The first principal component accounts 
for only 59.3% of the variance in this input data, as 
shown in Figure 1b. When the raw data is combined 
with cortical features for predicting controls to 
MCI/AD conversion, the first principal component of 
the input data accounts for 99.8% of the variance. PC 
one explained 59.3% of the variance in MCI to AD 
conversion. Combining raw data with dMRI features 
explained 56.2% of the input variance in control to 
MCI/AD conversion and 64.1% of the input variance 
in MCI to AD conversion on ADNI 3 data. 

 
Overall, we predicted MCI to AD conversions over a 
span of two years, with 75.5% balanced accuracy 
using cortical measures and 89.4% using dMRI 
measures. For the related task of predicting  Controls 

to AD/MCI conversion across all ADNI datasets, we 
achieved 96.9% balanced accuracy with cortical 
features, and 96.4% when using dMRI measures in 
the ADNI 3 dataset. 

4. CONCLUSION 
 

To the best of our knowledge, the proposed method 
outperforms many prior works on this task. Figure 1 
shows how correlated the features are, suggesting the 
value of including cortical regional gray matter 
volume and dMRI measures to calculate new PC 
features. 

Limitations of this study include the lack of 
consideration of more invasive biomarkers (tau and 
amyloid), and blood and biofluid assessments. This 
information was omitted due to limited information 
on these measures in the initial ADNI phases. In 
future, it will be valuable to study the added value of 
these ancillary markers. Even so, these initial 
benchmarks show the promise of predicting AD 
progression from a simple set of baseline biomarkers. 
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Predictive Task Input Features Best 
Performing 
Classifier 

Dataset Results 

Controls→MCI/A 
D 

Raw data RF All ADNI ROC: 0.926 
Balanced accuracy: 92.6% 
F1 score: 93.1% 

Controls→MCI/A 
D 

Raw data + 
cortical 

RF All ADNI ROC: 0.954 
Balanced accuracy: 96.9% 
F1 score: 95.4% 

MCI→AD Raw data + 
cortical 

SVM All ADNI ROC: 0.783 
Balanced accuracy:75.5% 
F1 score: 70.1% 

Controls→MCI/A 
D 

Raw data + dMRI KNN ADNI 3 ROC: 0.957 
Balanced accuracy: 96.4% 
F1 score: 96.0% 

MCI→AD Raw data + dMRI RF ADNI 3 ROC: 0.901 
Balanced accuracy: 89.4% 
F1 score: 88.8% 

 

Table 1. Predictive Accuracy for MCI to AD conversion and Control to MCI/AD conversion, noting the dataset 
used, features employed for PCA. Also the best performing classifier is noted for each task. 
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