
  

   

Abstract— Prosthetic users need reliable control over their 

assistive devices to regain autonomy and independence, 

particularly for locomotion tasks. Despite the potential for 

myoelectric signals to reflect the users’ intentions more 

accurately than external sensors, current motorized prosthetic 

legs fail to utilize these signals, thus hindering natural control. A 

reason for this challenge could be the insufficient accuracy of 

locomotion detection when using muscle signals in activities 

outside the laboratory, which may be due to factors such as 

suboptimal signal recording conditions or inaccurate control 

algorithms. 

This study aims to improve the accuracy of detecting 

locomotion during gait by utilizing classification post-processing 

techniques such as Linear Discriminant Analysis with rejection 

thresholds. We utilized a pre-recorded dataset of 

electromyography, inertial measurement unit sensor, and 

pressure sensor recordings from 21 able-bodied participants to 

evaluate our approach. The data was recorded while 

participants were ambulating between various surfaces, 

including level ground walking, stairs, and ramps. The results of 

this study show an average improvement of 3% in accuracy in 

comparison with using no post-processing (p-value < 0.05). 

Participants with lower classification accuracy profited more 

from the algorithm and showed greater improvement, up to 8% 

in certain cases. This research highlights the potential of 

classification post-processing methods to enhance the accuracy 

of locomotion detection for improved prosthetic control 

algorithms when using electromyogram signals. 

 
Clinical Relevance— Decoding of locomotion intent can be 

improved using post-processing techniques thus resulting in a 

more reliable control of lower limb prostheses.  

I. INTRODUCTION 

Lower limb amputation is the most common type of limb 

loss [1]. By 2050, it is estimated that around 2.2 million 

people in the USA will be living with a lower limb amputation 

[1]. The major need of this patient population will be a 

prosthetic limb that they can rely on to be independent, and 

that enables natural movement with reliable control [2]. 

Currently, there is no commercial leg prosthesis that can be 

controlled naturally using signals from the remaining muscles 

[3]. One reason for this may be the insufficient accuracy and 

reliability of locomotion decoding algorithms outside the 

laboratory [3,4]. Tools to develop more accurate and reliable 

algorithms for detecting different locomotion modes during 
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gait would therefore contribute to more functional leg 

prostheses.  

There are several research groups around the world that 

are working toward better control strategies for lower limb 

prostheses using electromyography signals (EMG) [3,4]. 

These algorithms can perform adequately in laboratory setups 

or in controlled settings outside the laboratory, but they may 

have flaws that result in insufficient accuracy in daily life. 

Not having locomotion detection is preferred over having an 

inaccurate detection. 

In common classification methods such as Linear 

Discriminant Analysis (LDA) [5], there are no further steps 

after classification to evaluate the reliability of the output. 

Post-processing methods can greatly enhance the accuracy of 

classification algorithms through various means. One widely 

used approach is the majority vote technique, which involves 

taking the most common output out of multiple windows. 

This method can effectively reduce the impact of spurious 

misclassifications and enhance the overall performance of the 

algorithm [6,7]. 

Another post-processing method involves rejecting data that 

may negatively impact the classification accuracy. For 

example, in the case of EMG data, a distorted channel may be 

rejected to improve the overall accuracy. Similarly, rejecting 

weak predictions (low confidence) can add an extra layer of 

precaution against misclassifications, although this approach 

may also result in the rejection of valid data [8–10]. 

In upper limb studies, there is more research on different 

methods of rejection-based post-processing [11,12]. Scheme 

et.al. used a rejection method with LDA and Fits law test 

[13,14] that calculates the posterior probability of the 

classification (confidence) of each window and only make a 

decision if it is higher than a certain threshold, rejecting the 

classification otherwise. This method showed promising and 

improved results in the Fits law test. There is yet no 

demonstration of this method of post-processing in 

locomotion detection during gait. 

In this study, we implemented LDA with rejection-based 

post-processing on an open-access database of EMG, IMU, 

and pressure sensor of 21 able-bodied participants to further 

improve the reliability and accuracy of locomotion detection 

algorithms. 
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II. METHOD 

In this research, we employed the LocoD dataset, an open-

source dataset that consists of EMG, IMU, and pressure 

sensor data recorded from 21 able-bodied subjects while they 

were ambulating between different terrains (level ground, 

ramps, and stairs). The data were recorded while participants 

were walking in a circuit of ramp ascent, level ground 

walking, stair descent, stair ascent, and ramp descent (5 

locomotion modes) for around 30 repetitions. The data were 

recorded from 8 EMG channels, 3 IMU channels (each 

channel has 3 accelerometers and 3 gyroscopes), and one 

pressure sensor. EMG signals were collected from the biceps 

femoris long head and short head, tensor fasciae latae, 

semitendinosus, vastus lateralis, rectus femoris, vastus 

medialis, and gracilis muscles. IMUs were placed on the foot, 

below the knee, and above the knee. A pressure sensor was 

built into a shoe insole for each research participant [15].  

We utilized LocoD, an open-source software platform, to 

effectively process and decode our data [16]. Our method 

involved four-steps, including signal pre-processing, feature 

extraction, classification and validation, and classification 

post-processing. To ensure optimal results, we employed 

LocoD’s default processing methods for the initial three steps 

of the process. Additionally, the open-source nature of the 

software allowed us to incorporate a final post-processing 

step. 

In the signal pre-processing phase, raw data were filtered. 

At each heel contact and toe-off 300 milliseconds of data 

extracted ad then divided into 200 milliseconds windows with 

30 milliseconds increment. From each signal window of 

EMG, four features are extracted: mean absolute value, 

waveform length, number of zero crossings, and slope sign 

change, whereas, from each IMU and pressure sensor channel 

window, we extract mean, maximum, minimum, and standard 

deviation features, resulting in a total of 108 features. 

The extracted features were passed to an LDA classifier 

with mode-specific and phase-dependent characteristics. 

Phase-dependent means that classification takes place on two 

occasions: during heel contact and toe-off. Mode-specific 

means that we have more than one classifier, an array of LDA 

classifiers that are used based on the previous locomotion 

mode. For example, if the previous mode is stair ascent, we 

choose the stair ascent classifier, and the possible prediction 

of this classifier can be remaining in stair ascent or 

transitioning to level ground walking. This trend is the same 

for all the locomotion modes except for walking where the 

possible outcome can be to remain in walking mode or 

transitioning to any other locomotion modes [17]. 

We used an LDA classifier with 10-fold cross-validation. 

LDA classification is based on the Bayes theorem. If we have 

K classes and an input feature vector x, we classify to predict 

which class X belongs to, with the highest probability 

��� = �|��. 
The Bayes theorem is as follows: 

 

��|�� = ���|������
����  

 (1) 

 

This indicates the probability of X belonging to one of the 

K classes is related to the probability of input taking on the 

value of X in each class. Also, we should note that  ���|�� is 

a probability density that shows the probability of input X in 

each class. We assume this has a normal distribution. 

P(Y) is the prior probability of class k, and 

P(X) is a normalization constant, namely, the sum over k of 

P(X|Y) P(Y). 

Conventional LDA chooses the class that maximizes the 

posterior probability of belonging X to a class. In our method, 

we calculate the posterior probability and in addition to 

choosing the class that has the maximum posterior 

probability, we check if the probability is higher than a certain 

threshold. If so, the signal window belongs to the class with 

the highest probability. However, if the probability fails to be 

higher than the threshold, no prediction will be made for that 

window. 
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We experimented with different threshold values between 

0.65 and 0.989, with 0.989 being the highest threshold we 

could use before reaching 100% rejection. The outcome 

measure of the algorithm is defined as the classification 

accuracy of different locomotion modes under two 

conditions: steady-state and transition. Steady-state accuracy 

is defined as the percentage of windows correctly classified 

when there was no transition, while transitional accuracy is 

defined as the percentage of windows accurately classified 

from one locomotion mode to another (e.g., transition from 

walking to stair ascent).  

To measure the effectiveness of our post-processing 

technique, we calculated the difference between the 

classification accuracy achieved with and without post-

processing for each threshold value and the number of 

rejected windows at each threshold. To compare the accuracy 

of classification between the two conditions, we performed a 

nonparametric paired t-test on 21 participants. This approach 

enables us to fine-tune the trade-off between the number of 

rejected windows and classification accuracy, to achieve a 

more robust and reliable control for lower limb prosthetics.  

III. RESULT 

To find the effect of post-processing on the locomotion 

detection accuracy, we calculated the locomotion detection 

accuracy for 21 participants with and without post-

processing, under two conditions:  1) steady-state (no change 

in locomotion mode), 2) transition (change in locomotion 

mode). To demonstrate the results, we averaged the accuracy 

of locomotion detection in steady-state and transition mode 

for each participant.  

We illustrate the percentage of rejected windows in 

relation to the rejection threshold (ranging from 0.65 to 0.989) 

in Figure 1. We also illustrate the difference in locomotion 

detection accuracy with and without post-processing in 

relation to the rejection threshold in Figure 2, as well as 

presenting the locomotion detection error for each participant 

with and without post-processing in Figure 3. 



  

Statistical analysis of the data revealed that post-

processing significantly increases the accuracy of locomotion 

detection (p-value < 0.05) for all the thresholds.  

 

 

 
Figure 1 The grand average of classification accuracy difference 

with and without rejection-based classification post-processing is 

plotted across different rejection threshold values, ranging from 

0.65 to 0.989. The grand average is calculated for each threshold 

value within this range 

 

 
Figure 2 . The x-axis represents the rejection threshold, which is a 

predefined value used to determine whether a window should be 

rejected or accepted. The rejection threshold can take any value 

within the range of 0.65 to 0.989. The grand average of the 

proportion of rejected windows is calculated for each threshold 

value within this range. 

IV. DISCUSSION 

The results of our study demonstrate that rejection based 

post-processing can significantly enhance the accuracy of 

locomotion detection in lower limb prosthetics control 

algorithms (see Figure 1). This finding is consistent with 

previous research on upper limb control in which it was 

suggested that using rejection-based post-processing will 

enhance classification and thus control [13,14]. Also, it is in-

line with the studies that showed that performing 

classification post-processing in locomotion detection tasks 

will lead to higher accuracy of detection  [6,7]. 
 

 
Figure 3 The locomotion detection error for 21 participants is 

illustrated on this graph, with the data for both transition and 

steady-state phases being averaged together. The graph compares 

the locomotion detection error  in two conditions: 1) when there 

was no rejection-based classification post-processing applied, and 

2) when there was rejection-based classification post-processing 

applied with a threshold of 0.989. This comparison allows us to 

evaluate the impact of the post-processing technique on the 

accuracy of locomotion detection 

One of the key advantages of this post-processing technique 

is its simplicity, making it easy to implement and understand. 

Unlike other methods, like majority vote that add delays, this 

method is faster in response. 

 Our study also found that participants with lower 

accuracy scores may benefit more from this method than 

others (see Figure 3). This finding is important because it 

suggests that this technique could be particularly beneficial 

for individuals who encounter challenges with traditional 

methods. However, it's important to bear in mind that this 

method can only provide benefits if the low accuracy is due 

to poor EMG signals. Furthermore, as per Figure 2, the 

highest rejection rate is only 7%, which is minimal and will 

not significantly impact the amount of available data. This 

means we can expect a steady flow of real-time information. 

Although our study has shown promising results regarding 

the potential of post-processing methods to enhance the 

accuracy of lower limb prosthetics control algorithms, it is 

important to consider some limitations. For instance, the 

study was conducted offline, which limits our ability to assess 

the algorithm's real-time performance [18]. Additionally, it 

would be valuable to test the algorithm on people with 

amputation, who have a different muscle structure than able-

bodied individuals. 

Further research is needed to evaluate the full benefit of 

this method in real-time situations and to test its 

implementation with other classifiers such as Support Vector 

Machine. These considerations should be kept in mind when 

interpreting the results and when designing future studies. 



  

V. CONCLUSION 

In this study, we propose a novel post-processing 

technique for enhancing the accuracy of locomotion detection 

during gait. Our method has the potential to be integrated into 

control algorithms for lower limb prosthetics and is yet to be 

fully explored for this purpose. 

By incorporating a rejection-based approach in our post-

processing technique, we achieve significantly improved 

classification results, resulting in less misclassification in 

locomotion detection. This makes the control algorithms 

more reliable for users, near 100% accuracy for locomotion 

detection is important to avoid falls and injury. Our study 

showed that the algorithm was particularly effective for 

participants with lower scores of locomotion detection 

accuracy, resulting in substantial improvements in their 

results compared to other participants. 

Our findings demonstrate that this simple post-processing 

technique brings us closer to using EMG signals as input for 

prosthetic legs, holding potential for laboratory settings and 

as a take-home device to improve the quality of life for lower 

limb amputees. As a next step, this method can be 

implemented in real-time to enhance the control of prosthetic 

legs, allowing users to walk more naturally and efficiently. 
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