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Abstract— The General Movement assessment (GMA) is a
validated assessment of brain maturation primarily based on
the qualitative analysis of the complexity and the variation of
spontaneous motor activity. The GMA can identify preterm
infants presenting an early abnormal developmental trajectory
before term-equivalent age, which permits a personalized early
developmental intervention. However, GMA is time-consuming
and relies on a qualitative analysis; these limitations restrict the
implementation of GMA in clinical practice. In this study based
on a validated dataset of 183 videos from 92 premature infants
(54 males, 38 females) born <33 weeks of gestational age (GA)
and acquired between 32 and 40 weeks of GA, we introduce
the mean 3D dispersion (M3D) for objective quantification and
classification of normal and abnormal GMA. Moreover, we have
created a new 3D representation of skeleton joints which allows
an objective comparison of spontaneous movements of infants
of different ages and sizes. Preterm infants with normal versus
abnormal GMA had a distinct M3D distribution (p <0.001).
The M3D has shown a good classification performance for GMA
(AUC=0.7723) and presented an accuracy of 74.1%, a sensitivity
of 75.8%, and a specificity of 70.1% when using an M3D of
0.29 as a classification threshold.

Clinical relevance— Our study paves the way for the devel-
opment of quantitative analysis of GMA within the Neonatal
Unit.

I. INTRODUCTION

General movements represent spontaneous motor activity
occurring from nine weeks of gestational age (GA) until the
appearance of goal-directed movements around four months
of corrected age [1]. The General Movement assessment
(GMA) is a validated assessment of brain maturation primar-
ily based on the qualitative analysis of the complexity and the
variation of general movements [2]. The GMA of preterm in-
fants performed prior to term and at term-equivalent age can
identify those presenting an early abnormal developmental
trajectory [3]. Early identification of such abnormal trajec-
tory is critical to initiate a personalized early developmental
intervention, and thus optimize the development of these
children [4]. However, the implementation of GMA within
the Neonatal Unit is limited because this assessment is time-
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U1059, CNRS, Hubert Curien U5516, F-42023 Saint-Étienne, France
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consuming. Another limitation is that GMA is a qualitative
assessment [1].

The recent progress in computer vision has led to many
studies about GMA automation, from marker-based to mark-
erless methods. Nelson et al. [5] have reviewed the different
works in this area. Most of them focused on assessing the
fidgety movements that appear from 2 months of age since it
is difficult to get infants’ videos before term age. Moreover,
recent automatic GMA studies are oriented to 2D video
analysis, using different kinds of both image features and
estimated parameters [5]. The optical flow was widely used
[6]–[8] to calculate some parameters such as the quantity of
motion, centroid of motion, movement magnitude, etc. [9],
[10]. 2D pose estimation was also investigated [11], [12]
and others parameters like joints-angle [13] were introduced.
Many have used deep learning algorithms to classify general
movements as normal or abnormal [14], [15] but this kind
of classification lacks interpretability. However, even though
much effort was invested, 2D analysis remains limited since
it does not exploit the overall infants’ movement information
in space, and information loss can go up to 53% due to
dimensionality reduction [9]. Thus, many recent works have
tried to use 3D automatic assessment with different methods.
RGBD cameras are mostly used for 3D pose estimation, but
it fails when dealing with occlusions and complex infant
poses (see II-C). Wu et al. [16] introduced a complexity
index but it lacks direct interpretation and was validated
on a dataset of 12 infants only. More generally, the lack of
annotated data is a common obstacle in this research area.

In this paper, we introduce the mean 3D dispersion as
an objective quantification index for automatic GMA. This
index is computed from the 3D pose of infants analyzed
over a one-minute stereoscopic video. It relies on a new
representation of the 3D skeleton joints over a unit sphere.
Moreover, we propose an evaluation of this automatic as-
sessment through a large dataset of 183 stereoscopic videos
of 92 premature infants taken in a clinical environment
and evaluated by an expert group composed of experienced
General Movements Trust-certified assessors.

Our main contributions are: (i) to introduce the mean 3D
dispersion (M3D) as a quantitative index of spontaneous
motor activity of preterm infants, (ii) to propose a new nor-
malized representation characterizing the activity of infants
and based on the projection of the 3D skeleton joints over
the unit sphere, (iii) to test the hypothesis that M3D can
classify normal and abnormal GMA in an extensive and
validated dataset of premature infants’ videos acquired within
the Neonatal Unit.
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II. METHODS

To objectively quantify the infants’ spontaneous move-
ments, we used an original method of 3D pose estimation
using a stereoscopic framework (section II-C). Then, the
3D coordinates of the elbows, wrists, ankles, and knees
were transformed to local origins on the infant’s body to
analyze their displacements according to the infant’s position
(sectionII-D.1). After that, since the size of the limbs is
fixed, we used a unit sphere representation (sectionII-D.2)
for each joint movement as a normalization procedure for
our population. After filtering these directions on the sphere
(section II-D.3) to get rid of duplications, we calculated the
mean 3D dispersion parameter and performed our statistical
analysis.

A. Ethics

This work is part of the AGMA study which was approved
by an Ethical Committee in February 2021 (IDRCB 2020-
A03335-34; Comité de Protection des Personnes Sud-Est II).
Written parental consent was obtained from each participant.

B. Dataset

Ninety-two preterm infants (54 males, 38 females) born
<33 weeks of GA and hospitalized in the Neonatology
department of the Centre Hospitalier Universitaire de Saint-
Étienne, France, were included. A GMA was performed on
183 videos (132 with a normal GMA, 51 with an abnormal
GMA) acquired between 32 and 40 (mean=36.3, SD=1.8)
weeks of GA and classified by an expert group composed of
experienced General Movements Trust-certified assessors, in
accordance with the Prechtl’s method of GMA [1].

C. 3D Pose Estimation

In order to assess the infants’ movements in 3D, a partic-
ular framework was used which consists of recording videos
of the babies with a stereoscopic camera (ZED2) at 30 FPS.
Each pair of images was then used as input to a retrained
convolutional neural network to get 2D pose estimations on
each side view. The neural network used for this purpose
was DARK [17] on top HRNet-W32 [18] which uses a new
coordinate representation. This architecture was retrained on
two common benchmark datasets (MPII and COCO) for the
purpose of estimating the poses of adults only. We fine-
tuned this model on an important dataset of real images
of infants containing 4,250 stereoscopic images (88,500 in
total) manually annotated and reviewed which improved its
PCK@0.2 from 93.31% to 98.30%. Therefore, it became
possible to automatically estimate 17 keypoints representing
the 2D pose of infants without using any markers and
with high precision. Hence, for each rectified stereo pair of
infants’ images, the corresponding 3D pose was obtained
using triangulation on their respective 2D pose estimations.

Besides being safe and easy to implement, the particular
advantage of this method over depth cameras is the ability
to estimate the position of occluded joints in 3D since depth
maps detect only visible body surfaces.

Fig. 1. Origin Transformation. (a): Local origin for right elbow movement
obtained using camera origin rotation and translation. (b): Transformation
of shoulder and hip origins to elbow and knee origins.

D. 3D Representation

Analyzing the whole infant’s movements in a video means
taking into consideration the displacement of the upper and
lower body members. Thus in our study, we specifically
analyzed the movement of the elbows, wrists, knees, and
ankles. For each stereoscopic video in our dataset, and
applying our 3D pose estimation framework, the full 3D
trajectories of the body joints in space were obtained. After
applying a median filter with a kernel size of 3 to get rid
of non-accurate points, we proceeded to analyze them as
follows.

1) Origin Transformation: The 3D estimation process
generates real-world coordinates of all keypoints in cen-
timeters with respect to the left camera in the stereo-pair.
Consequently, the same infant movements with different
baby postures (lying on the back or side) can be considered
different. To address this issue, we used a new local origin
for each joint with respect to the infant’s body.

• For the elbow movements, the shoulder on the respec-
tive side of the body was used as an origin. The vector
⃗ish connecting the two shoulders was used as the x-

axis (abscissa). A cross-product between the two vectors
linking the two shoulders with the point in the middle
of the hips led to a second vector k⃗sh perpendicular
to the infant’s body plan and representing the z-axis
(applicate). Lastly, the y-axis (ordinate) vector j⃗sh was
obtained as the cross product of ⃗ish and vector k⃗sh
after normalizing them. We refer to this new coordinate
system by ( ⃗ish,j⃗sh,k⃗sh) for later usage (see Fig. 1).

• For the wrist movements, the elbow on the respective
side of the body was used as an origin. The normalized
vector i⃗el between the elbow and the shoulder on
the same side was used as the x-axis. Thus, to get
the other two vectors, we rotated and translated the
previous coordinate system using Rodrigues’ rotation
formula. First, we started by finding the rotation axe
i⃗r(xr, yr, zr) as the cross product of ⃗ish and i⃗el. Then



the rotation angle θ = arccos
(
⃗ish · i⃗el

)
and finally the

rotation matrix R calculated as follows: with c = cos θ,
s = sin θ, and c′ = 1− c :

R =

 c+ x2
rc

′ xryrc
′ − zrs yrs+ xrzrc

′

zrs+ xryrc
′ c+ y2rc

′ yrzrc
′ − xrs

−yrs+ xrzrc
′ xrs+ yrzrc

′ c+ z2rc
′

 (1)

• For the knee movements, the hip on the respective
side of the body was used as an origin. The vector
i⃗hi connecting the two hips was used as the x-axis.
A cross product between the two vectors linking the
hips by the point in the middle of the shoulders led to
a second vector k⃗hi perpendicular to the infant’s body
plan representing the z-axis. Lastly, the y-axis vector
j⃗hi was obtained as the cross-product of the i⃗hi and
k⃗hi vectors after normalizing them.

• For ankle movements, the knee on the respective side of
the body was used as an origin. The normalized vector
⃗ikn between the knee and the hip on the same side was

used as the x-axis. Finally, to get the other two vectors,
we rotated and translated the knee origin as we did for
the shoulder origin.

2) Sphere Representation: For each joint, and after getting
the new local coordinates throughout the whole duration
of the video, we ended up with a point cloud representing
the movements of the joint and consequently the limb with
one end considered as the local origin. Therefore, the joint
movement had a shape of a moving point on a sphere
with a fixed radius equal to the limb length (see Fig. 2.a).
The advantage of this representation is that it can easily
be normalized to a unit sphere, eliminating the effect of
varying height and body size between infants, and preserving
the angles of the limb’s movement. Therefore, an objective
comparison of the quality of the general movements would
be possible.

3) Angular Activation Map: The unit sphere obtained
with the previous step represented all the joint positions
in space from a one-minute duration video. It included the
detections that resulted from very small movements which
are not representative of GMs and produce duplicated posi-
tions. Hence, we converted the cartesian coordinates (x, y, z)
of each point on the sphere to spherical coordinates (θ, φ)
resulting in a distribution with two variables 0 ≤ θ < 2π
and 0 ≤ φ ≤ π. Then the support of this distribution
was projected on an activation map with 128x64 dimensions
ranging from 0 → 2π and 0 → π as shown in figure 2.c.

Therefore, for every point with spherical coordinates
(θ, φ), the respective cell (u, v) in the activation map
was set to 1 such that θu−1 ≤ θ < θu with(
θu = πu

64 , u = 1, 2, .., 128
)
, and φv−1 ≤ φ < φv with(

φv = πv
64 , v = 1, 2, ..., 6

)
, to eliminate the points duplica-

tion and noisy detections. Finally, the activated cells were
converted back to cartesian coordinates resulting in filtered
unit spheres (see Fig. 2.b) ready to be used for statistical
analysis.

Fig. 2. (a): The unit sphere describing the movements of the infant’s left
hand around the elbow before filtering. (b): The unit sphere obtained after
filtering. (c): The activation map resulted from sphere (a) points.

E. Mean 3D Dispersion Measure

To quantify how complex and multi-directional the infants’
movements were in the space, the Mean 3D dispersion
parameter was used. For all the 183 videos recorded, and for
each joint, the 3D dispersion parameter was calculated using
the filtered unit spheres representation described earlier, as
follows: given a spherical point distribution with N points,
with each point having an associated unit direction vector v⃗i
(where i = 1, ..., N ), the 3D polarization that describes the
degree of alignment of points can be calculated as :

p =
1

N

∣∣∣∣∣
N∑
i=1

v⃗i

∣∣∣∣∣ (2)

Fig. 3. (a) Dispersed points on a sphere. (b) polarized points on a sphere.
(c) The sum of dispersed unit vectors. (d) The sum of polarized unit vectors.



Points that are concentrated in one particular direction as in
Fig.3 will have an important polarization, and inversely the
points that are well distributed all around the sphere will
have low polarization. Hence, knowing that 0 < p < 1,
the 3D dispersion parameter σ = 1 − p describes how well
the points are scattered around the origin, which is the most
suitable parameter for our study, denoting that a normal joint
movement that is complex and goes in all directions will have
a significant 3D dispersion compared to a movement that is
repetitive and poor which is a key parameter in GMA.

F. Statistical Analysis

The two populations (normal and abnormal GMA) were
analyzed and evaluated by calculating the 3D dispersion of
each joint and then averaging them to get the M3D for
every infant. The normalized histograms of averaged 3D
dispersions distributions were calculated and then the kernel
density estimate was plotted for each histogram (see Fig. 4).
A Kolmogorov-Smirnov test was used to test the hypothesis
of whether the dispersions from abnormal and normal GMs
were from the same continuous distribution or not in addition
to the asymptotic p-value. Also, the ROC with different
thresholds and AUC were calculated. Statistical analysis was
performed using Python 3.7. The significance level was set
at 5%.

III. RESULTS

Preterm infants with normal versus abnormal GMA had
a distinct M3D distribution (p <0.001, see Fig.4). The clas-
sification performance analysis of M3D for GMA revealed
an AUC of 0.7723. An accuracy of 74.1%, a sensitivity of
75.8%, and a specificity of 70.1% were obtained when using
an M3D of 0.29 as a classification threshold (see Fig. 5) and
considering the abnormal GMA as the positives and normal
GMA as negatives.

Fig. 4. Normalized histogram and kernel density plot of the mean 3D
dispersion of preterm infants with normal (n=132) versus abnormal GMA
(n=51). ***p < 0.001, with a Kolmogorov-Smirnov Test. Abbreviation:
GMA, General Movement assessment.

Fig. 5. ROC curve illustrating the classification performance of the M3D
for GMA. Abbreviations: AUC, area under the ROC Curve; GMA, General
Movement Assessment; M3D, mean 3D dispersion.

IV. DISCUSSION

The M3D displayed a good classification performance for
the GMA of preterm children. With an AUC of 0.77 (see Fig
5), a threshold of 0.29 was chosen as the best classification
index with the highest accuracy reported on such an impor-
tant dataset. Previous studies used the MINI-RGBD dataset,
which contains 12 videos of 1000 frames (≈ 33s) each,
representing synthetic preterm infants with real movements.
The study on 3D GMA classification from Wu et al. [16]
introduced an evaluation index S calculated using a single
angle per join. McCay et al. [14] presented neural network
architectures for classifying pose-based features as normal
and abnormal GMA. They provided both accurate results
but it was not possible to make an objective comparison due
to the type and the small number of videos used. Moreover,
these two studies used the Openpose network [19] which
was trained on human adult images only, therefore raising
the risk of keypoints detection error. Whereas for our study,
in addition to the fact that it is a 3D analysis method,
our pose estimation model was retrained on a manually
annotated dataset of 88k real infant images. Moreover, the
3D mean dispersion parameter was validated on a dataset of
183 videos of infants with homogeneous gestational age and
classified by an expert group composed of experienced Gen-
eral Movements Trust-certified assessors. Also, the spherical
representation used had a major impact on the ability to
compare these populations with different weights and ages
since we normalized on the actual size of the infants’ limbs.
Hence, we were able to avoid biased quantification for
infants with larger limbs and consequently larger movement
amplitudes. This allowed for a more accurate and reliable
comparison of the two populations. Moreover, its usage can



be extended to methods where the absolute distance between
joints cannot be measured, such as pixels that depend on
several factors like camera resolution and camera–subject
distance, making the measurements not constant outside
the single video framework and the comparison of data
among different subjects not valid [9]. Yet one limitation
of this study is that the 3D dispersion parameter can de-
scribe the spatial characteristics and the complexity of infant
movements but not their fluidity and variability which are
important parameters for GMA. The perspective of this work
is to develop other parameters which can describe the fluidity
and the variability of the general movements by analyzing
the temporal characteristics such as velocities and acceler-
ation vectors. These other parameters would allow a better
classification of normal and abnormal general movements.
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