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Abstract—Predicting the ability of an individual to compen-
sate for blood loss during hemorrhage and detect the likely
onset of hypovolemic shock is necessary to permit early clin-
ical intervention. Towards this end, the compensatory reserve
metric (CRM) has been demonstrated to directly correlate with
an individual’s ability to maintain compensatory mechanisms
during loss of blood volume from onset (one-hundred percent
health) to exsanguination (zero percent health). This effort
describes a lightweight, three-class predictor (good, fair, poor)
of an individual’s compensatory reserve using a linear support-
vector machine (SVM) classifier. A moving mean filter of the
predictions demonstrates a feasible model for implementation
of real-time hypovolemia monitoring on a wearable device,
requiring only 408 bytes to store the models’ coefficients and
minimal processor cycles to complete the computations.

I. INTRODUCTION

The ability to measure a patient’s progression of blood loss
from point of injury to exsanguination permits for therapeutic
intervention at an earlier, more efficacious point. Specifi-
cally, in order to survive pronounced blood loss, the body
must maintain delivery of oxygen by blood to the tissues
across the body through many compensatory mechanisms,
e.g. vasoconstriction. In other words, the delivery of oxygen
to the tissue is physiologically compensated up to the point of
decompensation [3] at which point so much blood has been
lost that the body can no longer maintain delivery of oxygen
to the tissues at which point vitals such as heart rate increase
and blood pressure decreases until death or resuscitation
efforts are successful. Unfortunately, the standard vital signs
clinically monitored, e.g., heart rate and blood pressure, fail
to provide early indication for the triage of hypovolemia [1].
The primary limitation of standard clinical vitals are two-
fold: 1) it is well known that vitals, e.g. blood pressure, often
exhibit a marked change only when the individual is in late
stages of hypovolemia and the body is no longer able to
compensate for further blood loss, and 2) every individual
has a unique ability to compensate for blood loss so a given
change in standard vitals does not reflect the same change in
compensatory reserve across individuals limiting their utility.

To address the need to improve detection of a patient’s
ability to compensate for further blood loss, a compensatory
reserve (CR) physiologic model has been proposed [1]. The
CR model has demonstrated in human subject studies [1],
[2], [3], how an individual physiologically compensates to
progressive blood loss to exsanguination of decompensation,
i.e., has a personalized reserve tank. The standard vitals are
sustained by the compensation, enough so, that the onset
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and progress towards exsanguination is not detected until
decompensation, vitals crash, i.e., until the reserve tank runs
out in the late stages of hypovolemia.

The compensatory reserve physiologic model provides a
mechanism for monitoring the progression of hypovolemia
to the point of decompensation. The CR is described with
a CR metric (CRM) which ranges from 100-0%, where
100% represents a healthy individual, no reserve used, and
0% indicates an individual’s point of decompensation, all
reserve consumed. CR has been demonstrated in various
human subject experiments [4], [2], [5], [3], and extraction
of an estimate of CRM from invasive arterial measurements
has been presented in [1]. A machine-learning (ML) convo-
lutional neural-network regression model has been created
to generate CRM [6] from volumetric waveforms such as
arterial blood pressure (ABP), reconstructed brachial arterial
blood pressure [7], [8], and photoplethysmography (PPG).

The work herein presents an alternative lightweight clas-
sifier to evaluate a subject’s CR as either good, fair, or
poor from PPG signals measured with a noninvasive optical
finger-clamp, like a finger-clamp used with pulse-oximeters
to measure SpO2. The lightweight ML model is suitable
to monitor real-time progression towards a decompensation
state in an ambulatory field scenario. A three-class character-
ization of the CRM can achieve a lightweight implementation
capable of accurately predicting useful information about the
patient’s status, where the “fair” (moderate compromise) and
”poor” (unstable) classes are particularly of interest as these
determine the need for intervention.

For ambulatory monitoring, the lightweight prediction
algorithm must execute on a small, low-energy wearable
device, and such devices often comprised of a 100-mAh
to 200-mAh battery with limited computational processing
power. Nonetheless, most modern low-energy microcon-
trollers include a single precision floating-point unit (FPU)
and can operate at close to 100 MHz; however, to conserve
energy the average execution frequency is maintained as
low as possible to extend runtimes. The CRM ML classifier
provides an approach that uses minimal resources includ-
ing memory storage and cycles to execute the algorithm.
A lightweight implementation on a small wearable device
enables ubiquitous noninvasive and ambulatory monitoring of
hypovolemia, internal hemorrhage, and other life-threatening
conditions. If undiagnosed [9] or only detected in late stages
of hypovolemia [10], these conditions can benefit from ear-
lier detection and intervention that can be provided by the
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lightweight algorithm described herein and implemented in a
low-energy wearable device for extended monitoring times.

II. METHODS

Noninvasive physiologic signals related to arterial wave-
forms (PPG, FinoMeter, etc.), captured during prior human
subject lower body negative pressure (LBNP) studies, [1]
were analyzed and used to train the CRM classifier. The
data used to train and evaluate the ML classifier developed
and reviewed herein was created with a set of lower body
negative pressure (LBNP) human subject tests completed
by the United States Army Institute of Surgical Research
(USAISR) [1]. The data was available to the Mayo Clinic re-
searchers through a Cooperative Research And Development
Agreement (CRADA) and the conducting human subject
Institution’s Review Board (IRB) approved all experimental
procedures involving human subjects. The USAISR LBNP
protocol is reviewed in [1]. The USAISR LBNP dataset
contains 201 subjects total, and 59 subjects with PPG wave-
forms used for this effort. The PPG was collected with a
finger-clamp commonly used to sense SpO2, however the
full-waveform PPG signal was recorded for evaluation.

The CR is estimated by extracting features from the
volumetric signal and using a support vector machine (SVM)
classifier to map features to a predicted class of the CRM
estimate of good, fair, or poor. Although various sensing
of the arterial volumetric changes are available, the work
herein focuses on photoplethysmography (PPG). In addition,
lightweight classifiers are considered to realize an embedded
and real-time implementation of the classifier.

A. Preprocessing

The PPG signals are first preprocessed with basic filtering.
A high-pass filter is employed to remove offsets and low fre-
quency wander. A low-pass filter is used to reduce noise and
bandwidth. The filters are implemented as single-precision
floating point, both are recursive filters. The HPF is a filter
structure that provides a notch at 0 Hz, the width of the
notch can be controlled by the « coefficient [11], o = 0.975
was used. The LPF is an IIR Direct Form-II filter with a
passband frequency of 48 Hz and a stopband frequency of 60
Hz. A Savitky-Golay [12] filter is used for additional PPG
signal smoothing, with an M=13 (window length=37) and
N=4 (polynomial order) configuration.

The preprocessing chain is illustrated in Fig. 1 and the
result of the preprocessing is demonstrated in Fig. 2.
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Figure 1. A block diagram of the preprocessing chain.

B. Features

The applications for this algorithm involves using PPG
signals. The features are generated over each five-second
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Figure 2. An example of the preprocessing on a photoplethysmog-
raphy (PPG) signal.

window and averaged. After the PPG preprocessing, the PPG
pulses are segmented on a beat-to-beat basis and the features
extracted. The beat-to-beat segmentation can be achieved, for
example, by using the approached outlined in [13].

The PPG pulse-rate segmentation used was previously
proposed in [13]. After the pulse-rate segmentation based
on [13] a derivative from the peak to the foot is taken; this
derivative will provide location the of changes in the down
slope. Features such as an estimate of the dicrotic notch
location in time were identified including other waveform
features on the downslope from the peak to the foot of the
diastolic phase.

The amplitude and time index of the points in the PPG
time-series signal were used as features to train the machine-
learning algorithm.

The features from the signal are the primary inputs to
the model used, however a subset of prior feature values
are included to provide a history to each instance’s set of
features. The features are presented to the machine-learning
algorithms at an asynchronous rate, when a peak of a signal
is detected.

C. Classification of Hypovolemic Compromise

As presented in [6] a linear target of the LBNP can be
used to train the model. The features previously described
can be used to predict the current CRM state.

However, in a real-time device, reporting the predicted
CRM along a linear objective is not needed. In place of
modeling regression on the linear fit of hypolovemia derived
from the LBNP studies, the physiological state may be de-
scribed by percentile classifications of the CRM. Rather than
predicting the CRM value, we segment the range of CRM
values into three bins: good, fair and poor. The selected three
classes were binned at respective thresholds of 100%-60%,
60%-30%, and 30%-0% These classifications are sufficient
to provide the information required in a real-time device to



create a predictive indicator for progression toward and onset
of hypovolemia.

A linear support-vector machine classifier (SVC) is used
to predict the discretized CRM class bin. A linear and
radial basis function (RBF) kernel SVC was trained for and
evaluated. In addition to the SVC, a Random Forest and
Ridge classifiers were trained and evaluated. The resources
(target memory usage) and performance of each classifier is
reviewed in the results section. Data from 59 LBNP study
subjects were used, and the SVC was trained on 80% of
the samples from these subjects and tested on the other
20%. To better appreciate the utility of the set of features
being utilized, each feature’s significance was measured by
contribution to the macro-averaged area under the receiving-
operator characteristic (AUROC) curve.

To further optimize the model, a causal, windowed statis-
tical filter was implemented on the classifier predictions. A
particle swarm optimization [14] technique was subsequently
employed for the identification of an appropriate statistic
and window size that would best smooth the outputs from
the classifier. Specifically, the mean and median statistics
were explored with smoothing windows between O and
25 samples wide with the objective being maximizing the
macro-class-averaged Fl-score. Consideration of the macro-
averaged metrics (AUROC and F1-score), which weigh each
prediction class equally, are significant to this application
because there are fewer instances in the data set that belong
to the “fair” class, yet robust identification of movement into
this class is needed for effective intervention.

ITII. RESULTS
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Figure 3. Linear SVC AUROC test data performance for predicting
each class after training with all features.

Using the complete set of 34 features, the linear SVC
achieves a macro-class averaged AUROC of 83% presented
in Fig. 3 while generating coefficients which require 0.408

KBytes of storage. If only a good/bad binary classifier is
used, the AUROC metric can be improved, however the fair
state is critical in clinical applications for both prediction
and intervention. A causal, moving-mean over 23-samples
was identified as the optimal design for filtering the SVC’s
outputs, and the addition of post-prediction filtering increases
the macro-averaged Fl-score across these four test subjects
from 0.5835 to 0.7223 illustrated in Fig. 4.

An optimization technique employed, was to rank the 34
features by most impactful to the macro-averaged AUROC
metric. The ranking of features is presented in Fig.5. A
minimal improvement was observed in the AUROC, for
each of the three classes, after 23/34 features are employed
for training. TO further reduce the Linear SVC complexity,
the input feature vector could be reduced to 23 features.
Nonetheless, the full set of features is used to maximize the
predictive ability of the fair state.

To provide a more comprehensive understanding of the
trade-offs for selecting a linear SVC, a Random Forest, SVC
Radial-Basis Function (SVC-RBF), and Ridge classifiers are
examined and the performance is summarized in Table 1. For
example, the Random Forest classifier explored achieves the
best performance by all metrics of those in Table 1. However,
the Random Forest classifier 2833.32 KBytes for storage,
considerably more than the linear SVC and exceeds the
budget for most low-energy microcontrollers. Optimal post-
classification filtering utilized a 15-sample moving median
and improved the Random Forest average F1-score, from the
same four test subjects as with the SVC, from 0.7639 to
0.7994.

IV. DISCUSSION

The work presented is focused on meeting the need to
predict onset of hypovolemia for lightweight implementation
on a wearable, and we demonstrate comparable performance
to more computationally intensive models for prediction.
The SVC used substantially less memory than other models.
Although notable that the Random Forest demonstrated im-
proved predictive ability in the fair class with 81% AUROC
compared to the SVC’s 66% fair AUROC, the Random Forest
model used 1800% more memory than the SVC. However, all
methods presented performed poorer than prior deep learning
models [6].

Because of the time-series nature of the CRM, where the
current state may be largely dependent on previous beat-to-
beat states, networks like recurrent neural networks (RNN)
and long short-term memory (LSTM) may be more appropri-
ate. However, it was anticipated that both the RNN and the
LSTM would result in much larger models, which would be
difficult to implement on a low-energy microcontroller. The
investigation of the recursive and other deep neural networks
(DNN) would only be investigated if higher accuracy was
needed. Other models may offer better fitting; however, the
limitation to many low-energy platforms is that these generate
large models beyond the capabilities of wearables.



Table 1. Model Performance Comparisons

Random SVM- Ridge

Maetric SVC [15] Forest [15] RBF [15] Classifier [15]
Training Time 16.92 s 1 min, 22 s 1 hr, 12 min, 33 s | 2.11 s
Coefficient Space | 0.408 KBytes | 2.833 Mbytes | 20.232 Mbytes 0.012 KBytes
F1-Score 0.5408 0.6730 0.3823 0.4802
Micro-AUROC 0.83 0.89 0.85 0.79
Macro-AUROC 0.80 0.88 0.87 0.77
Good AUROC 0.90 0.91 0.91 0.82
Fair AUROC 0.66 0.81 0.79 0.61
Poor AUROC 0.85 0.91 0.90 0.87
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The time-series known targets and predictions Fig. 4
demonstrate the relevance of the predictive capabilities in
monitoring an individual’s progression toward hypovolemia.
Additionally, the ability to filter the output of the SVC
model increases the performance to a range comparable with
the more computationally demanding Random Forest model
while maintaining a lightweight implementation. However,
post filtering does come at the cost of up to a 25-beat delay
in detecting a change between states (e.g. moving from good
to fair). Nonetheless, the delay is not expected to interfere
with triage and intervention, because the 25-beat delay, less
than a minute, is significantly less than the treatment delay of
undiagnosed conditions, which is many tens of minutes if not
more [10]. As discussed, a linear SVM was used because of
the low complexity so this algorithm may easily be realized

subject from the test data is
depicted for visualization of al-
gorithm performance through
time; the class predictions are
color-coded with green repre-
senting “good”, amber repre-
senting to “fair”, and red rep-
resenting “poor”

A & C) The time-series data
for the subject with the true tar-
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get in black and the predicted
targets as a scatter plot (top),
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A) depicts the ouput from the
classifier and C) depicts the re-
sult from applying a mean filter
to the output depicted in A)

B & D) The corresponding
confusion matrix for the three
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matrix for the time-series data
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in a small-resource, low-energy system.

Limitations to implementation exist due to the nature of
the controlled conditions of the LBNP study data used.
In ranking feature significance, heart rate was consistently
ranked the highest contributing feature among classifiers.
However, in these studies, the participants are lying down,
so their heart rate would be primarily modulated due to
the simulated hypovolemia. In reality, heart rate modulates
for many reasons which are not specific to hypovolemia, so
implementation may not be robust to conditions outside of
hypovolemia and result in poor specificity. Additionally, this
work utilized LBNP data in which participants were held
at each level of hypovolemia for five minutes; this work’s
approach to optimizing time-series predictions may not gen-
eralize well to rapid hemorrhage conditions, although rapid
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Figure 5. Linear SVC performance by measure of the individual
class AUROC with increasing number of features for training.

transitions between states in subject were well characterized.

Additionally, a more comprehensive assessment of the
computational cost is needed for determining constraints
for implementing on a wearable device. The memory usage
discussed herein results from a first-order approximation of
the storage utilized by the model once generated. It does not
address constraints that may be imposed through RAM usage
nor is it a complete estimate of necessary read-only memory
(ROM). Data from more subjects will assist in meeting this
aim and further refinement of a lightweight algorithm.

Implementation may be further optimized through feature
engineering for additional, heart-rate independent features
that generate improved performance and by reducing the
number of features necessary to segment and inform the
classifier.

V. CONCLUSION

This work demonstrates the feasibility and utility of em-
ploying a lightweight machine-learning model for classifica-
tion of hemorrhagic degree of compromise based on features
extracted from a wearable PPG monitor. A linear SVC offers
lightweight implementation with consistent performance and
permits an analog scale for when an individual enters a
compromised state that will be easy to interpret clinically.
The model discussed herein achieved a macro-class averaged
AUROC of 83% and macro-averaged Fl-score of 0.5408.
Data from more subjects will offer further refinement through
feature engineering and filtering the SVC output, but the work
thus far aids in and demonstrates progress toward develop-
ment of a wearable device to provide real-time monitoring
of pathological state.
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