
  

  

Abstract—Photoplethysmography (PPG) sensors integrated 

in wearable devices offer the potential to monitor arterial blood 

pressure (ABP) in patients. Such cuffless, non-invasive, and 

continuous solution is suitable for remote and ambulatory 

monitoring. A machine learning model based on PPG signal can 

be used to detect hypertension, estimate beat-by-beat ABP 

values, and even reconstruct the shape of the ABP. Overall, 

models presented in literature have shown good performance, 

but there is a gap between research and potential real-world use 

cases. Usually, models are trained and tested on data from the 

same dataset and same subjects, which may lead to 

overestimating their accuracy. In this paper: we compare cross-

validation, where the test data are from the same dataset as 

training data, and external validation, where the model is tested 

on samples from a new dataset, on a regression model which 

predicts diastolic blood pressure from PPG features. The results 

show that, in the cross-validation, the predicted and the real 

values are linearly dependent, while in the external validation, 

the predicted values are not related to the real ones, but probably 

just through an average value. 

 

I. INTRODUCTION 

Cuffless estimation of arterial blood pressure (ABP) with 
photoplethysmography (PPG) is an ongoing topic of research. 
PPG sensors integrated in wearable devices offer the potential 
to monitor ABP in patients, with a cuffless, non-invasive, and 
continuous solution for remote and ambulatory monitoring. 
An end-to-end solution using a single-location PPG sensor 
can be used to detect hypertension, estimate ABP beat-by-
beat and even reconstruct the shape of the ABP signal. Cano 
et al. [1] showed that a simple k-nearest neighbor  
(k-NN) classifier, which uses features extracted from ECG 
and PPG signals, can be used for binary classification of 
patients as normotensive or hypertensive group, with 88.7% 
accuracy, and increasing to 97% accuracy after calibration 
[2],[3]. 

Previous works [4,5] have attempted to estimate blood 
pressure values (systolic - SBP, diastolic - DBP and mean 
blood pressure - MAP) using regression models built on beat-
by-beat PPG features. In [3] DBP, MAP, and SBP were 
estimated with the mean absolute error (MAE) of 5.6±5.1 
mmHg, 5.2±5.2 mmHg, and 7.4±7.3 mmHg, respectively. 
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Dias et al. [5] employed the Category Boosting algorithm and 
obtained  even better model prediction scores with a mean 
error prediction of 0.02±3.77 mmHg and the Pearson’s 
Correlation Coefficient (R-value) of 0.93 for DBP, mean error 
of 0.05±7.84 mmHg and the R-value of 0.93 for SBP. Wang 
et al. [5] employed a neural network model and achieved a 
mean absolute error of 4.02 ± 2.79 mmHg for SBP and 
2.27 ± 1.82 mmHg for DBP. 

In [7], a convolutional neural network with calibration 
predicting ABP exhibited MAE of 3.20 mmHg and the root-
mean-square error (RMSE) of 4.38 mmHg. Overall, models 
presented in the literature have shown good performance, but 
also that there is a gap between research and potential real-
world use cases. Usually, these models are trained and tested 
on data from the same dataset and subjects, which may lead 
to overestimating their accuracy.  

Padovano et al. [8] pointed out that cross-validation can 
overestimate performance of a model. They have compared 
the accuracy of different models for detection of obstructive 
sleep apnea in two scenarios: 10-fold cross-validation and 
external validation, where the model was tested on a different 
database from the one used as the training set. The authors 
found that, regardless of the employed classifier, cross-
validation presents more optimistic results compared to those 
obtained under the external validation approach.  

Indeed, the generalization capability of a model to adapt to 
new, unseen data, is a prerequisite to employing this model in 
real-life scenarios [8]. To this end, in this paper, we compare 
cross-validation and external validation of the regression 
model for the prediction of DBP from PPG features. We show 
that in the cross-validation, the predicted and the real values 
are linearly dependent, while in the external validation, the 
predicted values are not related to the real ones, but probably 
just through an average value. 

II. METHODS 

A.  Data preparation and feature extraction 

The dataset used was the “Continuous Cuffless Monitoring 
of Arterial Blood Pressure via Graphene Bioimpedance 
Tattoos” [9], available on PhysioNet. It contains recordings 
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from 7 subjects who performed several experimental 
maneuvers to alter ABP, such as handgrip, cold pressor test, 
Valsalva maneuver, and cycling exercises. A recording in 
resting conditions was also taken before starting the 
experimental protocol.  Each recording contains a PPG signal 
measurement from the fingertip and a continuous blood 
pressure signal measured from the finger cuff with the 
volume-clamp method (Finapres NOVA device). 

Before building the regression model we extracted the 
relevant features from the raw PPG signal. According to [11], 
we extracted 16 different features: 

- Minimum, maximum, peak-to-peak amplitude of PPG. 
- PPG intensity ratio (PIR) - the ratio of maximum and 

minimum value of the PPG signal in each heartbeat, which 
corresponds to the changes in artery volume [12]. 

- Areas under the PPG [3]: S1: from onset to maximum 
slope during systole, S2: from maximum slope to PPG 
maximum, S3: from peak to inflection point. S4: area during 
diastole from inflection point to the end of the beat. We also 
calculated the ratio K of the systolic (S1 + S2 + S3) and 
diastolic (S4) area under the curve, which can be used to 
estimate artery compliance [13],[14]. 

- Amplitude and time of A and B wave in the second 
derivative of the PPG, LCF1 - count of signal crossing level 
equals to 30% of A peak amplitude; LCF2 – time duration of 
a positive derivative [15]. These parameters give information 
about cardiac contraction and pressure wave propagation.  

Fig. 1 visualizes these features in a PPG cycle and its 
second derivative. 

The algorithm described in [16] was used to separate the 
recordings into individual heartbeats, and the signal quality 
index (SQI) for each heartbeat was estimated using built-in 
function from the PhysioNet Cardiovascular Signal Toolbox 
[17]. The beats which were identified as poor using built-in 
toolbox criteria were excluded from the analysis. The analysis 
was performed in MATLAB R2022a.  

B.  Regression model 

The dataset was split into 4 parts of equal size (I-IV), and 
4 different models were trained for each part. The split was 
performed in two ways: random split and sequential split. The 
random split was equivalent to a 4-fold cross-validation 
scenario, where data from different subjects are shuffled so 
that training and testing data contain examples from each 
subject. Since data from the subjects are ordered in the 

sequential split, the model was tested on a mix of the seen and 
unseen subjects.  

Each data part I-IV was then randomly split into a training 
(70%) and validation dataset (30%). Next, we generated 
multiple ensemble tree models which were trained on  
the training data from each part, validated on the validation 
dataset, and tested on the validation dataset of other parts.  
The performance of each model was quantified with the Mean 
Absolute Error (MAE). 

III. RESULTS 

Fig. 2 shows the predicted DBP against the real one 
measured from the finger cuff with the random and sequential 

split. Observe that in the random split, the predicted values 
and the real ones are linearly correlated while in the sequential 
one, the predicted values are not related to the real ones, but 
probably just an average value which minimizes the MAE.  

Table 1 compares the performance of the different 
generated models. Even when looking at the MAE scores,  
we can observe that the in random split, the MAEs, are in the 
range of 7.4-7.7 mmHg, while in the case of sequential split, 
the generalization ability of the model was poor, when testing 
on a different part of the dataset, with MAEs in the range of  
4.3-35.2 mmHg.  

Table 1. Mean absolute error (MAE) for the ensemble tree regression model 
for the random and sequential split method. 

 Random split  Sequential split  

MAE I II III IV MAE I II III IV 

I 7.7 7.4 7.2 7.6 I 4.9 15.8 9.2 17.1 

II 7.5 7.4 7.5 7.6 II 25.8 6.8 15.0 23.3 

III 7.7 7.4 7.5 7.6 III 12.1 13.0 4.3 17.5 

IV 7.7 7.5 7.5 7.6 IV 35.2 17.3 10.9 6.2 

IV. DISCUSSION 

The generalization error of a machine learning model 
represents the difference between the empirical loss for the 
training set and the expected loss of a test set [18]. Zhang et 

al. [19] demonstrated that complex deep neural networks 
easily fit random labelled datasets, but when evaluated on 

Figure 1. Visualization of features extracted from Left) PPG signal; Right) Second derivative of the PPG signal. 



  

new observations, they produce scores which are no better 
than random chance. From the results observed in Fig. 3 and 
Table 1, we can conclude that our proposed regression model 
does not generalize to unseen subjects. We hypothesize that 
poor performance of the model may be caused partially by the 
small size of the dataset used, but mostly by the lack of 
necessary information in PPG signal to estimate blood 
pressure. 

It is well known that the light intensity measured by PPG 
is inversely correlated to the blood volume in the tissue [20], 
and often it is assumed that plethysmography measures the 
sum of volume changes in all blood vessels (large and small 
arteries, arterioles, venules, and veins), with the arterial 
pulsations dominating [21]. However, the PPG signal might 
not be accurate for the measurement of the arterial volume 
[22]. Wang and Zheng [22] compared reflection-mode PPG 
with A-mode ultrasound on the wrist artery and found that 
there were obvious differences between the shapes of these 
two signals. There are multiple factors that influence the PPG 
signal, such as the change in arterial blood volume, the 
mechanical properties of capillaries, and the erythrocyte 
movement [23]. The significance of these factors may vary 
depending on the sensor configuration and wavelength used, 
e.g. the green light in PPG, may not reach deep arteries hence 
the reflected signal may be generated by the dermis 
deformation due to the changing blood pressure [24].  

Mounting of the sensor can also alter the PPG 
measurement,  as the force applied to the PPG sensor may 
change the correlation between the PPG and blood pressure 
waveforms [25], thus altering the PPG waveform amplitude 
[26]. The blood pressure waveform may be assumed as a sum 
of several components: volume-related reservoir pressure, 
proportional to changes in arterial volume; forward 
propagation pressure wave, proportional to blood flow in 
arteries [27]; and reflected backward pressure wave [28]. 
Therefore, the information about changes in the artery volume 
may be not sufficient for estimating DBP. The impact of these 
components in blood pressure may vary between subjects, 
resulting on different morphologies of blood pressure 
waveforms [29]. Moreover, the amplitude of the pressure 
pulse is amplified towards peripheral arteries, and also pulse 
pressure is substantially higher in peripheral vessels, such as 

the brachial and radial arteries, compared to the central aorta 
[30]. In addition, peripheral pulse pressure augmentation is 
dependent on an individual cardiovascular characteristic, so a 
generalized function describing the relationship between the 
pressure waveform at different arterial sites may be inaccurate 
[31]. Arteries compliance may vary substantially in 
population [32], as compliance increases with age [33]. Inter 
arterial pressure may also cause changes in arteries 
compliance through activation of in arteries wall smooth 
muscle [34]. 

In this work, the features extracted from PPG were selected 
to address different cardiovascular phenomena: artery volume 
changes, pressure wave propagation, and artery compliance. 
During training, the model had to learn the relationship 
between the features and DBP, however, this relationship may 
be different for every subject. The training dataset must be 
sufficiently large and well spread over sample space to 
achieve a good generalization of a model [18]. In our case, 
especially when sequential split was performed, the trained 
model was unable to learn the individual subject relationship 
between DBP and PPG. On the other hand, models trained on 
a smaller subset of the dataset may show poor generalization 
ability [35]. 

We also desire that our model works in different test 
conditions: during rest, exercises, and autonomic nervous 
system test (handgrip and Valsalva maneuver). Such changes 
of the condition may not only change DBP but also arterial 
compliance and compromise model accuracy. Also, the 
employed dataset may be insufficient for proper training of a 
regression model. The proposed model therefore needs 
certain improvements: it should be trained on a larger dataset, 
individually calibrated, together with better pre-processing in 
order to extract only artery-related information. For this, a 
more sophisticated algorithm may be required. 

V. CONCLUSION 

We have investigated the use of single PPG signal with a 
regression type machine learning model, in order to monitor 
ABP. This may provide a cuffless, non-invasive, and 
continuous solution for remote and ambulatory monitoring of 
ABP and leverage usage of wearables devices but first poor 

Figure 2.  Prediction performance of the model. Left) the predicted result for the model trained on the first part and tested on the same part of the dataset 
(I-I). Right) plot for the model trained for the first part of the dataset and tested on the second part of the dataset (I-II). 



  

generalization and decrease of model performance on new 
subjects must be addressed. 

 Overall, although our regression model has exhibited a low 
MAE in cross-validation, it has shown poor generalization 
ability in an external-validation scenario. This problem must 
be fully addressed before the model can be implemented in 
clinical applications. Further works may include enhanced 
signal preprocessing and feature extraction, usage of more 
complex model architecture, and individualized calibration. 
Furthermore, a combination of features extracted from PPG 
and ECG may give the model more information toward a 
more reliable blood pressure estimate. 
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