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Abstract— Sleep patterns vary widely between individuals.
We explore methods for identifying populations exhibiting sim-
ilar sleep patterns in an automated fashion using polysomnog-
raphy data. Our novel approach applies unsupervised machine
learning algorithms to hypnodensities graphs generated by a
pre-trained neural network. In a population of 100 subjects we
identify two stable clusters whose characteristics we visualize
graphically and through estimates of total sleep time. We also
find that the hypnodensity representation of the sleep stages
produces more robust clustering results than the same methods
applied to traditional hypnograms.

I. INTRODUCTION

Sleep is a highly variably characteristic of human phys-
iology. Individuals exhibit needs for different amounts of
total daily sleep, as well as different patterns of awakenings
and sleep cycles within a period of sleep. Typically sleep
is characterized as cycling through four stages: three non-
rapid eye movement phases (N1, N2, and N3 or slow-wave
sleep), and one rapid eye movement (REM) phase. The cycle
from N1 through REM occurs multiple times during a given
night of sleep. The number of cycles, their duration, and the
duration of each phase vary from individual to individual and
across different nights of sleep for any one subject.

In this paper we explore methods for identifying sub-
populations which exhibit similar patterns of sleep. Using
waveforms from full night polysomnography (PSG) record-
ings, we apply an unsupervised machine learning approach
to locate clusters of subjects whose sleep cycles follow
similar sequences. There is a lack of clear metrics for sleep
quality, so an unsupervised approach can help identify pat-
terns that affect sleep quality [1]. Polysomnography, which
includes electrocardigorams (ECG), electroencephelography
(EEG), and other bio-physiological waveforms, provides a
rich source of data on nearly all relevant physiological
components of sleep. The raw waveforms, however, are
challenging to automated clustering techniques due to their
extreme high dimensionality: an eight-hour recording at
500Hz provides over 14, 400, 000 observations per channel.
Unlike supervised classification tasks which can benefit from
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Fig. 1. Example of a hypnogram and hypnodensity. The hypnogram (top)
shows the sleep stage for each epoch. The hypnodensity (bottom) represents
the probability of each sleep stage at a given epoch. The stages are encoded
by the colors: white, wake; pink: N1; light blue, N2; dark blue, N3; green,
REM.

very high-dimensional inputs, unsupervised learning suffers
a “curse of dimensionality.”

Traditionally, each 30-second epoch of PSG data is iden-
tified as belonging to one of the four sleep stages, or as
a wakeful period, by a trained human scorer. The resulting
hypnogram (see Fig. 1, top panel) illustrates the subject’s
sequence of sleep cycles over the night. Hypnograms provide
a much lower-dimensional representation of the sleep period
which is amenable to time-series clustering techniques. There
are several potential downsides to hypnograms, however.
First, they are a discretization of the data. Transitions
between sleep stages are a continuous process, so many
epochs are intermediate periods. Scoring these stages is to
some extent subjective and studies have found that typical
agreement between human scorers is only about 83% [2].
There is a growing literature on automating this process using
machine learning [3]. An approach that avoids both pitfalls
are the hypnodensities introduced in [4]. In a hypnodensity
each epoch of the PSG recording is represented by a tuple
(pW , pR, pN1, pN2, pN3) indicating the probability that the
subject is in sleep stage wake, REM, or non-REM 1, 2, or 3,
respectively. This gives a continuous representation of sleep
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stage which is more physiologically appropriate and allows
for a more rigorous use of clustering algorithms (which are
usually designed for continuous, rather than discrete input
data).

Our clustering pipeline consists of applying a pre-trained
neural network to convert raw PSGs to hypnodensities.
We then cluster the hypnodensities using the k-means (and
optionally a PCA dimensionality reduction step). Section II
describes the data and pipeline in detail. We compare the
effectiveness of clustering sleep patterns using hypnodensi-
ties and hypnogram representation in Section III. We then
evaluate the characteristics of the identified subpopoulation
clusters in Section IV.

II. METHODS

The data consist of 100 full night PSG recordings, col-
lected retrospecively from a population of adults (mean age
46.3±17.2) undergoing overnight sleep studies in the Mayo
Clinic Rochester Sleep Lab in accordance with a protocal
approved by the IRB of Mayo Clinic. The PSG data include
EEG, ECG, electrooculogram (EOG), chin electromyography
(EMG), airflow, artertial oxygen saturation, and respiraction
waveforms. Sleep stages were manually scored by a trained
observer using the PSG data. All recordings were overnight
with a typical duration around 8 hours (mean 8.37± 0.82).

Individual PSG data were converted to hypnodensity
representations of sleep state using the pre-trained neural
network provided in [4]. Data quality issues prevented two
PSGs from being converted to hypnodensities, resulting in
a sample size of 98 hypnodensity files. The resulting 5-
dimensional time-series data were resampled to a standard
legnth of 960 epochs. Each epoch thus represents a fixed
percentage of the sleep period rather than a fixed time length.

Clustering algorithms were applied to both the hypnoden-
sities and the original (human-scored) hypnograms. Except
where otherwise specified, all computations were imple-
mented in Python using the Scikit-Learn package [5]. For
hypnodensity data the k-means algorithm was used. This
requires the researcher to specify the number of clusters k,
then clusters Si are chosen such that the inertia

I =

k∑
i=1

∑
x∈Si

∥x⃗− µ⃗i∥22

is minimized. That is, the average distance from a data point
x⃗ to the mean of the cluster µ⃗i, is minimized. For hypno-
grams, k-means is not a suitable algorithm since the mean
of the sleep stage values depends on the numerical encoding
and the mean will typically not be a valid hypnogram itself.
Instead we use the k-modes algorithm, which is suitable for
categorical data types [6]. This is an adaptation of the k-
means algorithm where the mean value is replaced by the
mode of the cluster, and the Euclidean ℓ2-norm with the ℓ0-
norm.

To further reduce the dimension of the hypnogram or
hypnodensity, we apply principle component analysis (PCA)
prior to clustering. The data were projected to dimension

Fig. 2. Silhouette score for k clusters. Regardless of PCA projection,
k = 2 has by far the highest silhouette score. For hypnograms the unreduced
silhouette score is not shown – it is significantly lower than any reduced
version.

2n for n = 1 through n = 6 prior to clustering. The
projected dimensions are weighted linear combinations of
different time points, thus the projected data are no longer
a time series, nor are they discrete valued in the case of
hypnograms. For all PCA data the clustering was performed
using k-means.

The number of clusters was chosen using the silhouette
coefficient, which quantifies cluster quality based on how
many points are near the border between two clusters [7].
Silhouette scores range from −1 to +1 with larger scores in-
dicating a more natural clustering. Fig. 2 shows the silhouette
scores for different numbers of clusters for the hypnodensity
data (unreduced and with various PCA projections) and for
the hypnogram data.

Clustering quality was assessed via a stability analysis
[8]. Specifically, we resampled 90% of the data points 50
times, then applied the same clustering (and PCA) procedure
to the subsets as to the original. The adjusted Rand score,



which measures the similarity between labeling, adjusted for
random chance, between the subset clusters and the original
clusters (restricted to the 90% subset) was then computed [9].
The stability score for a given k and n is the average adjusted
Rand score across all choices of subsamples. A stability score
near one indicates that the clustering is robust in the sense
that the inclusion of no individual point significantly alters
the chosen clusters.

III. RESULTS

For both hypnograms and hypnodensities, with or without
PCA, the strongest clustering occurs when k = 2 (see Fig. 2).
Silhouette scores consistently decrease as the number of clus-
ters k increases. The case k = 1 is trivial and so cannot be
compared quantitatively, however the qualitative discussion
in Section IV suggests that there are reasons to separate the
two given clusters. Note that the silhouette score depends
on the data metric and hypnograms are measured using the
ℓ0 norm, while hypnodensities use the usual Euclidean ℓ2
norm. Thus while the hypnodensities typically have larger
silhouette scores than the hypnograms, this is not necessarily
a meaningful comparison.

The stability scores also indicate that k = 2 is the most
stable choice of clusters regardless of algorithm or PCA
projection (Fig. 3). In particular, hypnodensities with k = 2
were the only version of the data with a stability score
near one, which is desired for a strong clustering. Stability
does not depend on the metric, so we can compare the
stability of hypnodensities to hypnograms. The hypnodensity
stabilities are significantly higher (mean difference 0.14,
p = 1.6 × 10−14). In fact, only four combinations of k
and PCA dimension produced a more stable result with the
hypnograms. This supports our hypothesis that a continuous
measurement (the hypnodensity) produces a more robust
clustering than the discretized version.

Stability and silhouette scores both depend upon the
embedding, but the optimal k = 2 clustering of the hypn-
odensities was essentially unchanged across different PCA
dimensions (Fig. 4). In contrast, the hypnogram clusterings
varied significantly, and in general failed to agree with
the hypnodensity results. Of particular note, the unreduced
hypnodensity returned the same clusters as most of the PCA
projected hypnodensities. The unreduced hypnogram cluster-
ing (using the k-modes algorithm) was unique, agreeing with
neither the PCA hypnograms or the hypnodensities. We take
this as further evidence that the hypnodensity representation
is more effective for the task of clustering sleep patterns.

To confirm that the two clusters identified in the hypn-
odensity data are distinct, and not an artifact of the clustering
algorithm and unstructured data, we examine the distribution
of stability scores. As seen in Fig. 5, for 30% of the samples,
the k = 2 clustering was perfectly stable on the unreduced
hypnodensity data, as many as 50% were stable when a
PCA step was included in the pipeline. Stability scores detect
unstructured data—the expected number of stability scores
equal to one for random data is zero. Thus there is evidence
of bimodality within the hypnodensity dataset.

IV. DISCUSSION

Having identified two distinct sleep patterns in the abstract,
we attempt to qualitatively describe the differences between
these clusters. Since k-means is based on distance to the
center of the cluster, it is informative to look at the mean
of each cluster in the space of hypnodensities. These means
are shown in Fig. 6. These are valid hypnodensity plots,
though they do not correspond to the sleep pattern of an
actual individual subject. Cluster A contains 20 subjects.
It appears to be primarily characterized by a prevalance of
wakefulness with little REM sleep. The larger Cluster B,
containing the remaining 78 subjcts, shows high probabilities
of wakefulness at the beginning and end of the recording
period (as expected) but a much lower probability throughout
the night. It also exhibits an increasing probability of REM as
the night proceeds and a decreasing probabiliy of N3 (slow
wave) sleep. Promisingly, these findings reflect the known
structure of typical sleep, in which deep sleep (N3) occurs

Fig. 3. Stability scores for k clusters for both hypnodensities and
hypnograms. The most stable configuration always occurs when k = 2.
More aggressive dimensionality reduction tends to improve the stability.



Fig. 4. Adjusted Rand scores between all k = 2 clusterings. Different
clusterings of hypnodensities registered strong agreement (near one, upper-
left block) while clusterings of hypnograms were less consistent (lower-right
block). Agreement between hypnodensities and hypnograms was no better
than random chance (near zero, upper-right and lower-left).

Fig. 5. CDF Plot of stability score for unreduced data. The k = 2 case
shows 15 stable (Rand score of one) instances, while no k > 2 does. The
number of stable instances was strictly greater when PCA was included.

more often in the early part of the night, and REM more
frequently in the final cycles before awakening.

It appears that we can characterize the two clusters as
normal (in Cluster B) and disorded or fitful sleep (in Cluster
A). This is confirmed by the total sleep (estimated) sleep
time, which averaged 400 minutes in Cluster B, and only
293 in Cluster A. Since the data are observational and the
subjects were under study for diagnosis of possible sleep
disorders, it is not surprising to identify a large number of
instances of poor-quality sleep.

V. CONCLUSIONS

We have demonstrated a fully unsupervised machine
learning algorithm for detecting patterns in sleep cycles

Fig. 6. Mean hypnodensity for Cluster A (top) and Cluster B (bottom).

from polysomnography data. The results show a quantifiable
benefit to a continuous (hypnodensity) representation for
sleep cycles when applying clustering. The two clusters can
be interpreted as normal and fitful or disordered sleepers.
With a larger cohort we anticipate that it might be possible
to produce finer clusters within these subpopulations. We
also anticipate that these methods could be extended in
the future to field data collected from wearable devices,
allowing for long term studies to detect patterns within larger
populations and longitudinally across different nights for the
same individual.
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