
  

  

Abstract— The interaction between an active implantable 
medical device and magnetic resonance imaging (MRI) 
radiofrequency (RF) fields can cause excessive tissue heating. 
Existing methods for predicting RF heating in the presence of an 
implant rely on either extensive phantom experiments or 
electromagnetic (EM) simulations with varying degrees of 
approximation of the MR environment, the patient, or the 
implant. On the contrary, fast MR thermometry techniques can 
provide a reliable real-time map of temperature rise in the tissue 
in the vicinity of conductive implants. In this proof-of-concept 
study, we examined whether a machine learning (ML) based 
model could predict the temperature increase in the tissue near 
the tip of an implanted lead after several minutes of RF exposure 
based on only a few seconds of experimentally measured 
temperature values. We performed phantom experiments with a 
commercial deep brain stimulation (DBS) system to train a fully 
connected feedforward neural network (NN) to predict 
temperature rise after ~3 minutes of scanning at a 3 T scanner 
using only data from the first 5 seconds. The NN effectively 
predicted DTmax—R2 = 0.99 for predictions in the test dataset. 
Our model also showed potential in predicting RF heating for 
other various scenarios, including a DBS system at a different 
field strength (1.5 T MRI, R2 = 0.87), different field polarization 
(1.2 T vertical MRI, R2 = 0.79), and an unseen implant (cardiac 
leads at 1.5 T MRI, R2 = 0.91). Our results indicate great 
potential for the application of ML in combination with fast MR 
thermometry techniques for rapid prediction of RF heating for 
implants in various MR environments. 
 

Clinical Relevance— Machine learning-based algorithms can 
potentially enable rapid prediction of MRI-induced RF heating 
in the presence of unknown AIMDs in various MR 
environments. 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) is the preferred 
imaging modality for numerous neurological and cardiac 
disorders. Despite continuous advances in MRI, a persistent 
safety concern for patients with active implantable medical 
devices (AIMDs), such as deep brain stimulation (DBS) 
systems and cardiac implantable electronic devices (CIEDs), 
is the risk of radiofrequency (RF) heating of the tissue 
surrounding the conductive lead [1]. Therefore, there have 
been consistent efforts to quantify and reduce RF heating of 
AIMDs. The technical specification ISO/TS 10974, 
recognized by the FDA as the consensus standard for MR-
Conditional devices, outlines a four-tier approach to quantify 
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RF heating. For elongated implants, such as leads in 
neuromodulation or cardiac devices, recommended test 
procedures include application of the transfer function [2] or 
full-wave electromagnetic (EM) simulations of the patient 
body model and the medical implant. However, there are 
instances when these standard methods are not feasible, such 
as in the presence of abandoned or broken leads, either alone 
or near intact leads [3]. Another challenge is that the 
recommended limits set by device manufacturers to ensure 
the safety of the general population may be too conservative 
for specific cases. For example, RF heating of leads in 
neuromodulation and cardiac electronic implants has been 
shown to vary greatly between patients, with up to two orders 
of magnitude difference, due to the lead trajectory [4]–[8]. 
Thus, a tool that can predict RF heating around the tip of an 
unknown lead in an individual, based on the heating profile in 
the first few seconds of a standard scan, would be highly 
desirable.   

Recent research has employed machine learning (ML) to 
predict subject-specific local specific absorption rate (SAR) 
from B1+ maps [9] and SAR distributions from anatomical 
MRI images [10]. Neural networks (NNs) have also been 
utilized to predict SAR during MRI of orthopedic fixation 
plates based on their geometric features [11], [12]. Our group 
has previously trained a NN to predict trajectory-specific 
SAR of DBS leads using the distribution of the tangential 
component of the incident electric field along each lead 
trajectory [1], [13]. However, to date, no studies have 
attempted to predict local temperature changes using ML.  

In this study, we present a ML-based algorithm that 
predicts temperature rise in the tissue surrounding the tips of 
various AIMD leads after ~3 minutes of RF exposure during 
MRI scans at 1.2 T, 1.5 T, and 3 T, from only the heating 
profile in the first 5 seconds of each scan. The model was 
trained using data from a full commercial DBS system 
implanted in a tissue-mimicking phantom undergoing MRI at 
3 T. Subsequently, we evaluated the generalizability of the 
resulting neural network architecture by testing its ability to 
predict the RF heating of a DBS system during MRI scans at 
a different field strength (1.5 T), as well as a different field 
strength and polarization (1.2 T vertical scanner), and for 
unseen leads (cardiac pacemaker systems undergoing 1.5 T 
MRI). This proof-of-concept work paves the way for 
developing a clinically applicable tool to predict RF heating 
of unknown leads during MRI scans.  

Medicine, Northwestern University, Chicago, IL, USA (e-mail: 
jasmine.vu@northwestern.edu, fuchang.jiang@northwestern.edu, 
laleh.rad1@northwestern.edu).  

P. Sanpitak and B. Bhusal are with the Department of Radiology, Feinberg 
School of Medicine, Northwestern University, Chicago, IL, USA (email: 
pia.sanpitak@northwestern.edu, bhumi.bhusal@northwestern.edu). 

 

Rapid prediction of MRI-induced RF heating of active implantable 
medical devices using machine learning 

Jasmine Vu, Pia Sanpitak, Bhumi Bhusal, Fuchang Jiang, and Laleh Golestanirad, Member, IEEE 

This work is licensed under a Creative Commons Attribution 3.0 License. 
For more information, see http://creativecommons.org/licenses/by/3.0/

20
23

 4
5t

h 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

79
-8

-3
50

3-
24

47
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
40

78
7.

20
23

.1
03

40
90

0



  

II. METHODS 

A. Dataset 
The dataset consisted of 346 temperature measurements 

obtained from RF heating experiments performed with a full 
DBS system from Abbott, including a 40 cm lead (model 
6172), a 50 cm extension (model 6371), and an Infinity-5 IPG 
implanted in an adult-sized anthropomorphic phantom with 
346 distinct trajectories (as shown in Fig. 1). The RF exposure 
was generated using a high-SAR pulse sequence (B1+rms = 
2.7 µT) in a 3 T Siemens Prisma scanner (operating at 123 
MHz) (Siemens Healthineers, Erlangen, Germany). The 
maximum temperature rise (DTmax) in the surrounding gel was 
recorded using fiber-optic temperature probes (Osensa, 
Burnaby, BC, Canada, with a resolution of 0.01 oC) attached 
to the lead tips. The temperature was recorded at 0.5-second 
increments throughout the RF exposure, which lasted for a 
total of 150 seconds. The DTmax values were used to train the 
ML algorithm and served as the intended output. To ensure 
consistency across training, validation, and testing of the ML 
algorithm, DTmax was shifted such that the initial 
temperature—the starting room temperature of the phantom 
gel varied from 20-24 oC—was set to 0 oC for all experimental 
configurations.  
 

B. Feature Selection 

 
Figure 3. Temporal profiles of temperature at the DBS lead-tip during RF 
exposure for the 346 different DBS configurations. The black dotted line 
indicates the temperature after five seconds of RF exposure. 

The inputs to the NN were the measured temperature 
values during the first five seconds of RF exposure. The 
inputs consisted of 11 temperature values, starting from 0 oC 
with increments of 0.5 oC. The first five seconds were selected 
as the inputs as the goal was to predict DTmax around the tip of 
an implanted lead as quickly as possible. 

C. Artificial Neural Network Architecture 
The total dataset was divided into the training/validation 

dataset (70%) and hold-out test dataset (30%). The NN was 
implemented in Python (3.9.13) using Keras (2.11.0) with 
Tensorflow as the backend. The performance of the NN was 
evaluated based on R-squared (R2) and the mean squared error 
(MSE).  

Hyperparameter optimization was performed to determine 
the optimal architecture of the NN (i.e., the number of hidden 
layers and hidden neurons per hidden layer). This was 
performed using GridSearchCV with three-fold cross-
validation from the scikit-learn package (1.0.2) in Python. 
The optimal parameters were selected based on the NN model 
that had the lowest MSE. 

 The final ML algorithm consisted of a feedforward NN 
with one input layer, two fully connected hidden layers with 
11 and 9 hidden neurons, respectively, and an output layer 
(Fig. 2). The activation function in the hidden layers was 
rectified linear unit (ReLU) and linear in the output layer. The 
Adam optimization routine determined the network weights, 
and other model parameters included a learning rate of 0.01 
and a batch size of 32. The output of the NN was the predicted 
DTmax, which was then compared to the actual DTmax from the 
RF heating experiments.  

D. Generalizability of Neural Network 
To test the generalizability of the NN, we used three 

additional datasets from RF heating experiments with 
different AIMDs during MRI at different Larmor frequencies. 
These datasets included results from a DBS system during 1.5 
T MRI (Siemens Aera closed-bore scanner, 63.6 MHz) with 

 
Figure 1. (A) Example experimental setup at a 3 T Siemens Prisma scanner. 
(B) 3D rendering of an anthropomorphic phantom with a DBS system. 
Fiber optic temperature probes attached to the DBS lead were used to 
measure the temperature at the lead-tip. 

 
Figure 2. Architecture of the final neural network consisting of two hidden 
layers with 11 and 9 hidden neurons in the first and second layer, 
respectively. The first five seconds of experimentally measured 
temperature values served as the inputs to predict the maximum 
temperature rise.  



  

30 measurements, a DBS system during 1.2 T MRI (Fujifilm 
Oasis open-bore scanner, 50.4 MHz) with 28 measurements,  
and cardiac pacemaker systems from Medtronic (AzureTM XT 
DR MRI SureScanTM IPG with a CapSure® EPI lead 4965-
15 cm or lead 4965-25 cm) during 1.5 T MRI with 75 
measurements. The NN algorithm was applied to these new 
datasets to evaluate its ability to predict the RF heating of 
different AIMDs under different MRI conditions.    

III. RESULTS 

A. Distribution of Experimental Temperature Increase  
 The RF heating data for 346 configurations in the initial 

dataset showed a mean ± standard deviation of DTmax of 2.29 
± 1.76 oC, with a range of 0.05-8.27 oC. Similarly, for the DBS 
system during 1.2 T MRI, the mean ± standard deviation of 
DTmax was 0.31 ± 0.23 oC with a range of 0.04-0.94 oC. during 

During 1.5 T MRI, the mean ± standard deviation of DTmax 
was 3.88 ± 2.11 oC with a range of 1.72-11.90 oC. The cardiac 
pacemaker systems had a mean ± standard deviation of DTmax 
of 3.62 ± 3.10 oC with a range of 0.19-11.6 oC. Fig. 3 shows 
the temporal profile of DTmax for the 346 configurations in the 
initial dataset, and Figs. 4 and 5 show the distribution of DTmax 
for these four unique datasets. 

 

B. Effectiveness of ANN-based Predictions  
The training and validation were completed after 100 

epochs. The results showed that the NN was able to accurately 
predict the DTmax of DBS systems during 3 T MRI with a MSE 
of 0.32 oC2 and R2 of 0.99 for the hold-out test dataset. The 
results for the three additional test datasets were also 
promising, with MSEs of 0.01, 0.56, and 0.88 oC2 and R2 
values of 0.79, 0.87, and 0.91 for RF heating of DBS systems 
during 1.2 T MRI and 1.5 T MRI and cardiac pacemaker 
systems during 1.5 T MRI, respectively. The comparison 
between the NN-predicted DTmax and the experimentally 
measured DTmax can be seen in Fig. 6. The training was 
completed within 1-3 minutes, and all predictions were 
performed in less than 1 minute. 

IV. DISCUSSION & CONCLUSION 

As the demand for MRI exams continues to grow, with an 
estimated 66-75% of patients with AIMDs such as DBS 
systems expected to require an MRI exam within 10 years of 
implantation [14], efforts to address the problem of RF 
heating have also increased. These efforts include modifying 
the material and design of leads [15], implementing new MRI 
transmit technology to establish a low electric field area 
tailored to the patient’s implanted lead [16]–[19], and 
investigating the use of ultra-high-field [20], [21] and open-
bore vertical scanners [22]–[24]. Despite the ongoing efforts 
to mitigate RF heating in patients with AIMDs, MRI exams 
remain a challenge for these patients. Therefore, having real-
time monitoring tools to predict RF heating of unknown 
implants on a personalized basis would be highly 
advantageous.    

In this study, we proposed a ML-based solution to predict 
the temperature increase around a conductive lead. We 
designed a fully connected feedforward NN to estimate the 
DTmax using only the first five seconds of RF heating data.  
Our NN produced highly accurate predictions (R2 = 0.99) for 
the initial test dataset. Furthermore, we evaluated the 
performance of our NN under different field strengths, MRI 
scanner types, and AIMDs. The results indicated that the NN 
could successfully predict DTmax even with changes to the 
experimental conditions (R2 up to 0.91), except for some 
exceptional cases where the experimentally measured DTmax 
< 0.2 oC. This is crucial, as the configurations tested in our 
experiments reflected a wide range of lead trajectories and 
orientations with respect to the MRI electric fields, which can 
lead to substantial variability in the magnitude of RF heating, 
as observed in actual patients [25], [26]. 

Our future work aims to explore other ML architectures to 
compare the robustness of the present NN, improve the ability 
of the current NN to predict very low RF heating, and validate 
the ML-based predictions. Additionally, we will substitute the 
temperature probe data with data obtained from fast MR 

 
Figure 4. Distribution of DTmax for 346 phantom experiments performed 
with a commercial DBS system.  

 
Figure 5.  Distribution of DTmax for cases in the additional test datasets 
including RF heating of a DBS system during MRI in an open-bore scanner 
and MRI at 1.5 T and of CIEDs during MRI at 1.5 T. 



  

thermometry sequences, which have demonstrated their 
ability to accurately predict temperature increase in the 
presence of conductive leads [27]. 
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Figure 6. Performance of the neural network with (A) the initial hold-out 
test dataset, (B) DBS during MRI in an open-bore scanner at 1.2 T, (C) 
DBS during MRI at 1.5 T, and (D) CIEDs during MRI at 1.5 T. 


