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Abstract— The automatic estimation of pain is essential in
designing an optimal pain management system offering reliable
assessment and reducing the suffering of patients. In this
study, we present a novel full transformer-based framework
consisting of a Transformer in Transformer (TNT) model and
a Transformer leveraging cross-attention and self-attention
blocks. Elaborating on videos from the BioVid database,
we demonstrate state-of-the-art performances, showing the
efficacy, efficiency, and generalization capability across all the
primary pain estimation tasks.

I. INTRODUCTION

Pain, according to Williams and Craig [1], is “a distressing
experience associated with actual or potential tissue damage
with sensory, emotional, cognitive and social components”.
From a biological perspective, pain is an unfavorable sensa-
tion that originates from the peripheral nervous system. Its
primary function is to activate sensory neurons and alert the
organism to potentially harmful situations, thus serving as a
vital mechanism for identifying and responding to threats [2].
The Global Burden of Disease (GBD) study refers that pain
is the number one cause of years lived with disability (YLD),
concerning not only individuals but also society as a whole,
constituting clinical, economic, and social constraints [3].
The primary types of pain are acute and chronic. The major
difference between them is related to the duration; when it
is present for less than three months, the pain is considered
acute and probably accompanied by physical damage, while
chronic perseveres the recovery process [4]. People of all
ages experience painful situations due to an accident, illness,
or even during treatment, provoking a plethora of daily life
challenges. Especially in chronic pain conditions, additional
mental health problems, e.g., anxiety, depression, and sleep-
related problems, commonly occur [5]. Furthermore, inad-
equate pain management often leads to negative collateral
consequences associated with drug overuse, opioids, and
addiction [6]. A crucial matter that needs focused attention
is the welfare of vulnerable groups who may not be able to
communicate directly or objectively. Their pain assessment
is usually based on observing behavioral or physiological
responses from caregivers or family members. This specific
setting often leads to wrong or insufficient assessment for
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two main reasons: continuous monitoring is challenging
without adopting technology-based solutions, and the es-
timation’s precision is often minimal due to inadequate
training or prejudices [7]. Further challenges arise with
the elderly where either diminished manifestation ability or
even unwilling communication behavior are presented [8].
In addition, an essential body of research [9][10] indicates
significant variations of pain manifestation among people of
different gender and age, suggesting that the pain assess-
ment is an even more intricate process requiring increased
consideration. The automatic pain estimation procedure is
founded on utilizing behavioral and physiological modalities.
The primary behavioral modalities include facial expressions,
body-head movements, gestures, and vocalizations, while
the physiological include electrocardiography, electromyog-
raphy, and skin conductance responses.

The mainstream deep neural architectures in computer
vision (CV) are the Convolutional Neural Networks (CNN).
Especially in the research field of automatic pain assessment
elaborating images/videos, CNNs are the fundamental com-
ponent of every approach [5]. The domination of transformer
architecture [11] in natural language processing (NLP),
where their core element is the self-attention mechanism,
inspired researchers to develop equivalent models for visual
applications. The introduction of Vision Transformers (ViT)
[12] led to the creation of a new paradigm of architecture in
the computer vision domain. A plethora of new approaches
has developed on the basis of ViT. Such an approach is
the Transformer in Transformer (TNT) [13], which enhances
the local feature representation by the further division of
the patches into sub-patches. Despite the impressive results
and flexibility of the transformer-based models, they scale
poorly with the input size and increase the computational
cost because of the self-attention layers which compare the
input to every other input. Several efforts have been made
to reduce the complexity and improve the efficiency of such
architectures. The primary approach is the replacement of
self-attention with cross-attention [14] or the incorporation
of both [15].

In this study, we develop a framework consisting of a TNT
model, which is utilized as the “spatial feature extraction
module” applied to each video frame, and a transformer-
based model with cross and self-attention blocks as the
“temporal feature extraction module” applied to each feature
sequence of videos. In this way, we can exploit the temporal
dimension of videos and offer more reliable estimations
about the continuous nature of the pain sensation. The
remaining of this study is organized as follows: in Section
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II, we present the related work, and Section III describes the
development process of our framework. Section IV presents
the conducted experiments and results, and finally, Section
V concludes the paper.

II. RELATED WORK

Numerous research efforts have been made to estimate
the pain level in humans utilizing videos. Zhi et Wan [16]
trying to capture pain’s dynamic nature, they developed Long
Short-term Memory Networks with sparse coding (SLSTM).
Tavakolian et al. [17] developed 3D CNNs with kernels of
various temporal depths capturing short, mid, and long-range
facial expressions. Similarly, in [18], the authors proposed
a 3D CNN but combined it with self-attention structures
to increase the importance of specific input dimensions.
Thiam et al. [19] adopted two strategies to exploit video’s
temporal dimension. Initially, they encoded the video frames
into motion history and optical flow images, and after,
they designed a framework incorporating a CNN and a
bidirectional LSTM (biLSTM). In a similar manner, the
authors in [20] also encoded videos into single RGB images
employing statistical spatio-temporal distillation (SSD) and
followed by a Siamese network trained in a self-supervised
setting. Werner et al. [21] followed a domain-specific feature
approach, proposing a set of markers describing facial actions
and their dynamics and classifying them with a deep random
forest (RF) classifier, while Patania et al. [22] adopted Deep
Graph Neural Networks (GNN) architectures and dense maps
of fiducial points in order to detect pain. Finally, Xin et
al. [23] presented a multi-task framework, estimating the
person’s identity beyond the pain level, comprising a CNN
with an autoencoder attention module.

Regarding transformer-based methods, the only study pro-
posed in [24] where the authors developed a deep attention
transformer framework that consists of a ResNet subnetwork
extracting frame-based features and a transformer model
capturing the temporal relationship among the frames.

III. METHODOLOGY

This section describes the employed database, the prepro-
cessing methods, the design of our framework, as well as
implementation details regarding the training procedure.

A. Preprocessing

Before feeding videos into our model for the pain esti-
mation procedure, it was necessary to apply face detection
and alignment for performance and computational efficiency
improvements. We combined the well-known face detector
MTCNN [25] with the Face Alignment Network (FAN) [26],
which utilizes 3D landmarks. The 3D approach is essential
to our problem since the head movements in several cases,
especially in high-intensity pain, are increased, leading to
erroneous alignment from 2D approaches. We also note
that all the experiments were conducted utilizing frames
of resolution 224 × 224 pixels. Figure 1 depicts the facial
alignment method applied in a video frame.

Fig. 1: Application of the face alignment. Illustration of the
landmarks in 2D space (left) and 3D space (right).

B. Transformer-based Framework

Our framework consists of two main components; the
“spatial feature extraction module”, i.e., a TNT model, and
the “temporal feature extraction module”, i.e., a transformer
with cross and self-attention blocks. In Figure 2, we illus-
trate our proposed framework, which consists of 24 million
parameters and 4.2 giga floating point operations (GFLOPS).

1) Spatial feature extraction module: Similarly to stan-
dard ViT, every given frame is initially split into n patches
Fk = [F k,1, F k,2, ...F k,n] ∈ Rn×p×p×3, where p × p is
the resolution of each patch (i.e., 16 × 16) and 3 is the
number of color channels. Afterward, the patches are further
divided into m sub-patches for the model to learn both global
and local feature representations of the frame. Consequently,
every input frame of a video is transformed into a sequence
of patches and sub-patches:

Fk → [F k,n,1, F k,n,2..., F k,n,m], (1)

where F k,n,m ∈ Rs×s×3 is the m-th sub-patch of n-th
patch of k-th frame of each video, while s× s is resolution
of each sub-patch (i.e., 4 × 4). Next, the patches and the
sub-patches with a linear projection are transformed into
embeddings Z and Y . The following step is the position
embedding, where the spatial information of each patch
and sub-patch is retained. This procedure is based on the
1D learnable position encoding, where for each patch, the
following position encodings is assigned:

Z0 ← Z0 + Epatch, (2)

where Epatch are the patch position encodings. Respectively,
for each sub-patch within a patch, a position encoding is
added:

Y i
0 ← Y i

0 + Esub−patch, (3)

where Esub−patch are the sub-patch position encodings and
i = 1, 2, ...m is the index of a sub-patch within a patch.
Next, the sub-patches are led to a transformer encoder called
an “Inner Transformer Encoder”, consisting of 2 multi-
head self-attention blocks, which are essentially dot product
attention. The attention is expressed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

V

)
, (4)

where Q ∈ RM×D, K ∈ RM×C and V ∈ RM×C (M
is input dimension, C and D are channel dimensions) are



projections of the corresponding input and represent the
Query, Key and Value matrices respectively. Specifically,
Q = XWQ, K = XWK and V = XWV where W are
the learnable weight matrices and X is the input. The output
embedding of the “Inner Transformer Encoder” is added
to the patch embedding, which subsequently is led to the
“Outter Transformer Encoder”. This encoder consists of 3
multi-head self-attention blocks, and the output embedding
of it is a feature vector d = 192. The entire “spatial feature
extraction module” has a depth of 12 blocks.

2) Temporal feature extraction module: The extracted fea-
ture embedding of each frame within a video is concatenated
into a larger vector D which essentially is a feature repre-
sentation of the entire video V ⇒ D = (d1

_
d2

_
, ...dk).

Afterward, the D feature vector is driven into our temporal
module, a transformer model consisting of 1 cross-attention
and 2 self-attention components with a fully connected
neural network (FCN) after each one. The cross-attention
introducing asymmetry into the attention operation reduces
the computational complexity and makes our approach more
efficient. Specifically, instead of a projection of the input
with dimensions of M × D, the Q in cross-attention is a
learned matrix with dimensions N × D, where N < M .
The self-attention components of this module are identical as
described in equation 4. The cross and self-attention blocks
are 1 and 8 multi-heads, respectively. Furthermore, regarding
position encoding, we adopted the Fourier feature position
encoding [15].

3) Training Details: Initially, before the automatic pain
estimation training procedure, we pre-trained our “spatial
feature extraction module” with the VGGFace2 dataset [27],
consisting of more than three million face images from over
nine thousand people. In Table I, we list the hyper-parameters
of our method and the augmentation techniques applied.

C. Database Details

In this study, we employed the publicly available BioVid
Heat Pain Database [28], which incorporates facial videos,
electrocardiograms, electromyograms, and skin conductance
levels of 87 healthy participants (subjects). They were sub-
jected to experimentally induced heat pain at five different
intensity levels; No pain (NP), mild pain (P1), moderate
pain (P2), severe pain (P3), and very severe pain (P4). The
participants were stimulated 20 times for each intensity, thus
generating 100 samples for every modality. In this work, we
utilized the videos (87×100 = 8700) from Part A of BioVid.

IV. EXPERIMENTS & RESULTS

In this section, we present the conducted experiments
regarding pain estimation. We note that the experiments were
performed in binary and multi-level classification settings.
Specifically, (1) NP vs. P1, (2) NP vs. P2, (3) NP vs. P3, (4)
NP vs. P4 respecting the binary classification tasks, and fi-
nally, (5) multi-level pain classification, utilizing all the avail-
able pain classes of the database. The evaluation protocol
that we followed is the leave-one-subject-out (LOSO) cross-
validation. Furthermore, the classification metrics adopted

TABLE I: TRAINING HYPER-PARAMETERS USED IN OUR
METHOD.

Epochs Optimizer Learning
rate

LR
decay

Weight
decay

Warmup
epochs

200 AdamW 1e-4 cosine 0.1 5

Label
smoothing

DropPath Attention
Dropout

Loss
Function

Augmentation
Methods

0.1 0.1 0.1 Cross
Entropy

AugMix &
TrivialAugment

DropPath applied to the “spatial feature extraction module”, Attention Dropout
applied to the “temporal feature extraction module”

in this study are the following: micro-average accuracy,
macro-average precision, macro-average recall (sensitivity),
and macro-average F1 score.

A. Pain Estimation

Regarding the classification results of the pain estimation
tasks, we observe the following: on NP vs. P1, we achieved
65.95% accuracy, while the precision is close to it with
65.90%. Similarly, the F1 score is 65.04, and interestingly
the recall (sensitivity) is 67.85%. On NP vs. P2, the accuracy
increased to 66.87% as also the other performance metrics,
especially the F1 score, which increased over 1.15% showing
the improvement in the detection of true positive samples.
On NP vs. P3, the increase in the performances is particularly
noticeable. We attained 69.22% accuracy, while the sensitiv-
ity improved to 70.84%. The classification improvement is
reasonable since the pain is characterized as severe at the P3
level, and the subjects’ manifestations become more intense.
On the task with the higher level of pain, i.e., NP vs. P4, the
recall is 74.75%, while in terms of accuracy, we achieved
73.28%. It is evident that recognizing very severe pain is the
most straightforward identification task considering that the
pain threshold is on the tolerance limits, and most subjects
demonstrate it clearly with their facial expressions. Finally,
the range of performances is diminished in the last task,
i.e., the multi-level classification, since estimating all levels
simultaneously is a more challenging procedure. We attained
31.52% accuracy and recall of 29.94%, indicating that the
ability to detect true positive samples in this task has more
challenges.

At this point, we want to highlight that our framework
regarding both the architecture and the training procedure
remained identical across all tasks, binary and multi-level
classification tasks. Our purpose was to study the general-
ization capabilities of our method for every possible scenario
(within the limits of the database) similar to clinical settings.
Table II presents the classification results.

B. Video Sampling

In this section, we study the effect of video sampling on
automatic pain estimation. The experiments in IV-A were
conducted utilizing all the available frames (i.e., 138) from
each video. In the following experiments, we sample frames
with a stride of 2, 3, and 4. Initially, utilizing all 138 frames
leads to a video feature representation D with a size of
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Fig. 2: An overview of our proposed framework for automatic pain estimation

TABLE II: CLASSIFICATION RESULTS ON THE PAIN ESTI-
MATION TASKS.

Metric
Task

NP vs P1 NP vs P2 NP vs P3 NP vs P4 MC

Acc. 65.95 66.87 69.22 73.28 31.52
Pre. 65.90 66.89 69.18 73.31 31.48
Rec. 67.85 68.34 70.84 74.75 29.94
F1 65.04 66.19 68.54 72.75 27.82

Acc.: accuracy Pre.: precision Rec.: recall NP: no pain P1: mild pain P2: moderate
pain P3: severe pain P4: very severe pain MC: multi-level classification

138 × 192 = 26496. Likewise, a stride of 2 leads to 69
frames, and a size of D equals 69 × 192 = 13248. For
strides 3 and 4, we have 46 and 35 frames, respectively,
and sizes of D equal 8832 and 6720. Table III presents the
classification accuracy using the different number of input
frames for the corresponding pain estimation tasks. At the
same time, Figure 3 illustrates the impact of the number of
frames on the mean accuracy across the five tasks and the
mean runtime during inference. We observe an increase in
performance of about 1.38%, utilizing 138 frames compared
to 35 frames. Respectively, the runtime is increased by a
factor of 3. Despite the fact of the multiply of runtime, every
sampling rate choice can achieve real-time automatic pain
estimation in situations where it is needed.

TABLE III: CLASSIFICATION RESULTS ON THE PAIN ES-
TIMATION TASKS UTILIZING A DIFFERENT NUMBER OF
INPUT FRAMES, REPORTED ON ACCURACY %.

Number of
Frames

Task

NP vs P1 NP vs P2 NP vs P3 NP vs P4 MC

138 65.95 66.87 69.22 73.28 31.52
69 65.76 66.74 69.15 73.25 31.29
46 65.66 66.70 68.50 71.78 31.20
35 65.40 66.12 68.32 72.01 30.80

C. Interpretation

An important area of research, especially in the deep
learning-related fields, is the interpretability of the models
to provide explanations for the decisions making. This is
especially true regarding healthcare topics since the trans-
parency improvement of these models is essential for their
acceptance and adoption in the clinical domain. In this study,
we adopted the method of [29] to create relevance maps
displaying in which facial areas our model, i.e., the “spatial
feature extraction module”, pays attention. Examples of the
relevance maps are shown in Figure 4. We notice that in the
initiation of a facial expression sequence, the model attends
in “arbitrary” areas. As the pain progression continues, the
attention becomes more precise to regions that manifest the
painful occurrence. We want to point out that according to
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Fig. 3: The effect of the number of input frames on the
accuracy (left) and the effect on the runtime in milliseconds
(right). Runtime is during inference on a Nvidia RTX-3090.

the relevance maps, no universal expressions describe pain
exclusively. Nevertheless, we recognize a tendency toward
general facial regions such as the mouth and eyes.

D. Comparison with existing methods

Finally, in this section, we compare our accomplished
results employing the transformer-based framework (using
all available frames per video) with studies that utilize the
Part A of the BioVid database with all 87 subjects and follow
the identical evaluation protocol, i.e., leave-one-subject-out
(LOSO) cross-validation, in order to perform objective and
accurate comparisons. Table IV shows the corresponding re-
sults, where there are three main groups of studies; i) studies
conducting exclusive pain detection (NP vs. P4), ii) studies
examing pain detection and multi-level pain estimation, and
finally, iii) studies exploring all the major pain-related tasks.

Our approach, comparing it with the studies that conducted
experiments on every task, achieved the highest perfor-
mances on both binary and multi-level pain estimations.
Regarding the studies that were performed solely on pain
detection or/and multi-level pain estimation, our method
attained comparable or even better results, e.g., [19][20][22].
We observe that the performances come from the restricted
in terms of experiments studies tend to be higher. In our
view, however, the importance of researching and developing
systems capable of performing adequately in every scenario
is greater.

V. CONCLUSIONS

This study explored the application of the transformer-
based architecture for automatic pain estimation using
videos. We developed a framework that consisted exclu-
sively of transformer models, exploiting both the spatial
and temporal dimensions of the frame sequences. The con-
ducted experiments revealed the efficacy of our framework
in assessing pain and demonstrating the generalization ca-
pabilities to accomplish every pain estimation task with
satisfactory classification results, especially in low-intensity
pain where the facial expressions are subtle. Furthermore,
we showed that our proposed framework is characterized by
high efficiency and is able to perform in real-time settings.
Another important aspect of our study is the creation of
relevance maps demonstrating to which facial areas the
model pays attention. We believe that more efforts from
the affective-computing community are needed to improve
the interpretability of the adopted deep-learning approaches.

In addition, we suggest that future studies include details
regarding the computational cost of their approaches, e.g.,
throughput measurements, number of model parameters, or
number of FLOPS, to assess their real-time application.
Although it may not be the primary focus of the studies, it
is still relevant. The comparison with other related methods
demonstrated comparable or improved results depending on
the corresponding training scenario. We believe that future
research regarding the automatic pain estimation field needs
to investigate all available tasks since they clinically provide
essential information for pain management.

It is worth noting that our current approach may benefit
from the utilization of more complex modules. Specifically,
increasing the number of attention heads and blocks in
the transformer models, or enlarging the extracted feature
vectors, would result in a more comprehensive representa-
tion of the data. However, it should be acknowledged that
implementing such modifications would also come with a
significant increase in computational cost and time require-
ments.
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