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Abstract— Our study aims to provide basic
insights on the impact of the spiral shape of the
cochlea, i.e., of geometric torsion and curvature, on
wall pressure and wall shear stress. We employed
computational fluid dynamics in square duct models
with curvature and torsion similar to those found in
human cochleae. The results include wall pressures
and wall shear stresses within the ducts under
oscillating axial flow. Our findings indicate that the
helical shape generates higher transverse wall shear
stresses compared to exclusively curved or twisted
ducts. The wall pressures and transverse wall shear
stresses we found rise to amounts that may be
physiologically relevant in the cochlea.

Clinical relevance— The role of the spiral shape of
the cochlea in hearing physiology remains, for a large
part, elusive. For a better apprehension of hearing
and its disorders, it is important to investigate the
influence of geometric properties on biofluids motion
and emerging phenomena in the cochlea.

I. INTRODUCTION

The cochlea, our organ of hearing, is a fluid-
filled spiral structure that is small and difficult to
access. Because direct experimental observations
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are limited, our understanding of hearing phys-
iology remains partial. One unresolved question
is that of the role and relevance of the cochlear
morphology for hearing. In particular, the conse-
quence of transverse flows on the shear flow along
membranes has so far not been considered. In this
study, we aim to quantify the effects of geometric
curvature and torsion on wall shear stress and pres-
sure fluctuations in abstracted models with cochlea-
like geometric properties. In toroidal, twisted, and
helical ducts, curvature and torsion cause transverse
flow phenomena [1], [2], which further generate
local pressure fluctuations and wall shear stresses
[3], [4]. Using computational fluid dynamics, we
simulated flow at oscillation frequencies covering
the infrasonic regime and the low-frequency hear-
ing range of humans, for which the apical region of
the cochlea (the region with the highest curvature
and torsion) is particularly sensitive.

The cochlea contains thin membranes, such as
the basilar membrane (housing the sensory ep-
ithelium) and the Reissner’s membrane (only con-
sisting of two cell layers) [5]. Wall shear stress
and pressure fluctuations caused by transverse flow
could locally deflect these membranes. Our results
could help to provide insights on the relevance of
morphology for hearing.

II. METHODS
A. Duct Geometries

We have simulated fluid flow in straight, toroidal,
twisted and helical geometries to independently
characterize the impact of curvature and torsion on
pressure fluctuations and wall shear stress (see top
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row in Fig. 1). The geometries were constructed
using established methods [1] with centerline cur-
vature κ = 1/3mm−1 and torsion τ = 1/8mm−1.
These values approximate those measured in hu-
man cochleae [6]. To save computational resources,
we chose a total arc length of the centerline of
10mm for all models, which is shorter than a
human cochlea (37mm) [7]. The models’ cross-
section measures 2mm× 2mm to capture typical
dimensions of the cochlea [8].

B. Wall Pressure and Wall Shear Stress
The Cauchy stress tensor T is given by

T = −pI+ S, (1)

where S is the viscous stress tensor, p is the
pressure and I is the identity tensor [9]. We subtract
the mean pressure p̄ over the cross-section from the
total pressure to obtain pressure fluctuations pfluc:

pfluc(x, y, z, t) = p(x, y, z, t)− p̄(t). (2)

S is computed using the symmetric part of the
velocity gradient

S = µ[∇u+ (∇u)T ], (3)

where u = u(x, y, z, t) is the velocity field at a
time t. The viscous stress τw exerted by the fluid
on a wall element with unit surface normal vector
ŝn (pointing into the fluid domain) is

τw = Sŝn. (4)

We can further decompose the viscous stress into
an axial and a transverse component. We define the
transverse component ŝtr as orthogonal to ŝn and
to the duct centerline’s tangent t̂:

str = ŝn × t̂ and ŝtr = str/∥str∥. (5)

The local wall element coordinate system is then
defined by (̂sax, ŝtr, ŝn), with the direction of the
axial component given by

ŝax = ŝtr × ŝn. (6)

Since τw is perpendicular to ŝn, we use the two-
dimensional decomposition of the stress:

τw = τw,axŝax + τw,tr ŝtr, (7)

with axial wall shear stress τw,ax = τw · ŝax and
the transverse wall shear stress τw,tr = τw · ŝtr.

C. Model Implementation and Numerical Model

The perilymph fluid in the cochlea is modelled as
a Newtonian fluid and the flow is considered incom-
pressible (low Mach number) [10]. We used a sinu-
soidal pressure boundary condition at the inlet and
zero pressure at the outlet surface. The oscillation
frequency f ranged from 0.125 Hz to 256 Hz (the
human hearing range starts at 16 Hz). The associ-
ated Womersley numbers are α = dh

2

√
2πfρ/µ =

1 to 48, and thus cover quasi-steady to unsteady
inertial flows (hydraulic diameter dh = 2mm,
dynamic viscosity and density of water at body
temperature µ = 0.69mPa s and ρ = 993 kg/m3

[10]).
For the simulations, we used the finite element

solver COMSOL Multiphysics® (COMSOL AB,
Stockholm, Sweden). The meshes consist of 77 500
hexahedral elements per geometry, with ensured
convergence. We determined the inlet pressure
amplitude iteratively such that the axial velocity
amplitude averaged over the cross-section W0 re-
mained 200 µm/s across the stimulation frequency
range [11], [12]. The resulting Reynolds number is
Re = dhW0ρ/µ = 0.58, implying that the fluid
phenomena are in the Stokes regime.

III. RESULTS

A. Wall Pressure

Fig. 1 shows the pressure fluctuations over time
along the perimeter of a cross-section in the middle
of the geometries.

In the toroidal duct, a pressure gradient between
the outer (H − Φ) and the inner wall (Υ − Σ) of
the duct can be observed as the result of fluid
being pushed outwards. Notably, the pattern ob-
served in toroidal ducts is unidirectional, i.e., it
does not change with the direction of the axial
flow. By contrast, in twisted ducts, the wall pressure
changes according to the oscillation cycle of the
axial flow. High wall pressure fluctuations arise in
the proximity of corners. This observation agrees
with Kheshgi’s findings for steady flows [13]. The
pattern remains consistent over the entire range of
observed frequencies.

In the helical duct, we recover a combination of
the patterns observed in the toroidal and the twisted



Fig. 1. Top row: Geometries with corresponding curvature κ and torsion τ . Greek capital letters indicate the corners of the central
cross-section (shaded violet). Other rows: Pressure fluctuations along the perimeter of the central cross-section over time for different
oscillation frequencies with period T = 1/f . Zero time in the plots corresponds to the time of maximum inlet pressure. Note that
the pressure fluctuations at α ≈ 48 (f = 256Hz) in the toroidal duct are distorted due to the proximity to the numerical noise
floor (Fig. 2). The colorbars are scaled differently.

duct. At α ≈ 1, both contribute with comparable
magnitudes, although the torsional effects dominate
slightly. At higher α, however, the pressure fluctu-
ations because of curvature decrease to negligible
amounts. Notably, the pressure fluctuations reach
greater magnitudes than the cumulative pressures

observed in the other two ducts. The peak of the
axial velocity is shifted toward the inner wall,
because of the low Reynolds number and high cur-
vature [14], and subsequently amplifies the pressure
fluctuations near the inner wall.

Fig. 2a shows the maximum pressure fluctua-



Fig. 2. Maximum wall pressure fluctuations pfluc (a) and
pfluc with respect to the inlet pressure P0 in percent (b),
as a function of the Womersley number. The black symbols
indicate numerical noise defined as the maximum wall pressure
fluctuations found in the straight duct simulations.

tion at the wall as a function of the Womersley
number α. Since the inlet pressure amplitude P0

was increased with the Womersley number to keep
velocity amplitude W0 the same, we examined the
maximum pressure fluctuation with respect to P0 in
Fig. 2b. The maximum relative pressure fluctuations
remain nearly constant for α => 24 in the helical
and twisted geometry, at a level of 0.4% and
0.2%, respectively. Surprisingly, the combination
of curvature and torsion in the helical duct causes
pressure fluctuations to increase more than twice as
much as in the twisted duct, which has no curva-
ture. In contrast, in the toroidal duct, the pressure

maximum is most pronounced at low frequencies
and located at the center of the outer wall, whereas
at high frequencies, the peak becomes wider and is
distributed along the entire side wall (Fig. 1). We
observed that the fluctuations decrease with α−2

for Womersley numbers α => 9.

B. Wall Shear Stress

Fig. 3 and 4 illustrate the evolution of the axial
and transverse wall shear stresses along the perime-
ter of the central cross-section (see Fig. 1) over
time. The lower y-axis limit corresponds to the time
of maximum inlet pressure.

The axial wall shear stress (AWSS) increases
by about one order of magnitude from 0.125 to
256Hz in all geometries. Its direction changes with
the axial flow direction. In the toroidal and helical
ducts, the highest axial wall shear stresses are found
at the inner wall of the geometry (Υ - Σ) and are
about 40% higher than in the twisted duct. For the
AWSS it is the toroidal aspect of the geometry that
dominates.

We define counterclockwise (Φ-Υ-Σ-H-Φ) trans-
verse wall shear stress (TWSS) as positive. By
opposition to the AWSS, the patterns of the twisted
duct dominate the TWSS in the helical duct. In the
presence of torsion, strong TWSS emerges close to
the corners, which increase and move closer to the
corners for higher Womersley numbers. The highest
TWSS can be observed in the helical duct close to
the corners Υ and Σ.

Fig. 5 displays the ratio of the maximum trans-
verse wall shear stress to the average axial wall
shear stress as a function of the Womersley number
α. We chose this ratio to quantify the deviation of
shear stress from the axial direction, which could
be relevant for transverse membrane deflections
in the cochlea [15]. The maximum relative wall
shear stress in the twisted and helical geometries
increases up to 10% and 20%, respectively. Over
the entire frequency range, the helical geometry
exhibits approximately a two-fold increase in the
maximum relative TWSS compared to the twisted
duct. Conversely, we observed that the maximum
TWSS in the toroidal geometry decreases with α−2

and falls below 0.01%.



Fig. 3. Axial wall shear stress τw,ax visualized for different oscillation frequencies f along the perimeter of the central cross-
section. One oscillation period (T = 1/f ) is shown on the y-axis. Greek capital letters indicate the position along the perimeter.
The colorbars are scaled differently.

Fig. 4. Continued on next page.



Fig. 4. Transverse wall shear stress τw,tr visualized for different oscillation frequencies f along the perimeter of the central cross-
section. One oscillation period (T = 1/f ) is shown on the y-axis. Greek capital letters indicate the position along the perimeter.
The colorbars are scaled differently.
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Fig. 5. Maximum transverse wall shear stress τw,tr with
respect to the mean axial wall shear stress amplitude T0,ax

(in percent) as a function of the Womersley number. The black
symbols indicate numerical noise defined as the maximum
relative transverse wall shear stress found in the straight duct
simulations.

IV. DISCUSSION

A. Wall Pressure

Wall pressure fluctuations drive transverse flows
near walls, as observed, e.g., in the formation of
Dean cells in toroidal ducts [16]. The pressure
fluctuations we found reflect the behavior of the
transverse flows found by [1], [2]. In helical ducts,
torsional effects are dominant for transverse flows
at low Reynolds numbers [1] and, as our results

suggest, also for the corresponding wall pressure
fluctuations. Both are similar to those observed in
twisted ducts.

We identified two regimes in Fig. 2 (and Fig. 5):
For Womerlsey numbers below 4, the maximum
magnitudes behave similarly in the curved, twisted
and helical geometries. For α > 4 transient inertial
forces are predominant and the magnitudes diverge
strongly. This coincides with the phase lag between
the pressure and the axial velocity which reaches
about 90° at α ≈ 4 [2]. The increase with α2 in
Fig. 2a in helical and twisted ducts can probably be
attributed to the unsteady term in the Navier-Stokes
equations, which scales with α2 when written in
dimensionless form. Conversely, the magnitudes in
the toroidal duct remain nearly constant in Fig. 2a.
This could indicate that the non-linear inertial term
continues to dominate in the toroidal duct.

B. Wall Shear Stress

The shear stress is highest along the axial di-
rection, but when torsion is present, there is also
an evident transverse component. This is an effect
of transverse velocities, which in helical ducts at
256 Hz reach a magnitude of above 31% of the
main flow [2]. Gammack and Hydon suggested that,
for steady flows, torsion leads to an increase in
TWSS through altering the transverse flows [3].

Interestingly, the axial shear stress in helical
ducts is dominated by curvature, while torsion
dominates the transverse component. It seems that



AWSS follows axial flow, while TWSS is affected
by transverse flow, which show similar dependen-
cies on geometry [2].

The maximum TWSS in helical duct reaches
higher magnitudes than we would expect from a
superposition of the effects in twisted and toroidal
ducts. This is most evident at 256 Hz, where the
transverse shear stress in the helical duct reaches a
maximum of 20% of the mean AWSS, while the
sum of the TWSS in twisted and toroidal ducts
would only amount to 10%. Curvature shifts the
axial velocity peak towards the inner wall (low Re,
high κ) [14], which enhances transverse velocities
there and thus also TWSS caused by torsion. Sum-
marized, the combination of curvature and torsion,
as observable in the cochlea, enhance TWSS, while
curvature alone leads to negligible TWSS.

C. Potential Physiological Implication

The geometry induced transverse flow introduces
wall shear stress and local pressure fluctuations
which have magnitudes that could be physiologi-
cally relevant, especially in the presence of torsion
and close to corners. This is particularly inter-
esting because in the cochlea the axial flow and
its corresponding transverse flows occur mainly in
the scala tympani and vestibuli, introducing pos-
sibilities of fluid-structure interactions. Membrane
deformations could lead to radial or transverse
flow phenomena within the interfacing scala media,
which contains the sensory epithelium for hearing.

D. Study Limitations

The main limitation of our study is the use of
abstract geometries to represent the highly complex
anatomy of the human cochlea [17]. Further studies
that include fluid-membrane interactions are needed
to investigate the possible effects on the mechanics
of the cochlea.

REFERENCES

[1] C. J. Bolinder, “First- and higher-order effects of curvature
and torsion on the flow in a helical rectangular duct,”
Journal of Fluid Mechanics, vol. 314, pp. 113–138, 1996.

[2] N. Harte, D. Obrist, M. Caversaccio, G. P. R. Lajoinie, and
W. Wimmer, “Transverse flow under oscillating stimula-
tion in helical square ducts with cochlea-like geometrical
curvature and torsion,” arXiv preprint arXiv:2303.15603,
2023.

[3] D. Gammack and P. E. Hydon, “Flow in pipes with non-
uniform curvature and torsion,” Journal of Fluid Mechan-
ics, vol. 433, 2001.

[4] C. Cox, M. R. Najjari, and M. W. Plesniak, “Three-
dimensional vortical structures and wall shear stress in a
curved artery model,” Physics of Fluids, vol. 31, no. 12,
2019.

[5] H. Felix, A. D. Fraissinette, L.-G. Johnsson, and M. J.
Gleeson, “Morphological features of human reissner’s
membrane,” Acta oto-laryngologica, vol. 113, no. 3, pp.
321–325, 1993.

[6] W. Wimmer, L. Anschuetz, S. Weder, F. Wagner,
H. Delingette, and M. Caversaccio, “Human bony labyrinth
dataset: Co-registered ct and micro-ct images, surface
models and anatomical landmarks,” Data in brief, vol. 27,
p. 104782, 2019.

[7] H. Rask-Andersen, W. Liu, E. Erixon, A. Kinnefors,
K. Pfaller, A. Schrott-Fischer, and R. Glueckert, “Human
cochlea: anatomical characteristics and their relevance for
cochlear implantation,” The Anatomical Record: Advances
in Integrative Anatomy and Evolutionary Biology, vol. 295,
no. 11, pp. 1791–1811, 2012.

[8] P. Aebischer, M. Caversaccio, and W. Wimmer, “Fab-
rication of human anatomy-based scala tympani models
with a hydrophilic coating for cochlear implant insertion
experiments,” Hearing research, vol. 404, p. 108205, 2021.

[9] P. K. Kundu, I. M. Cohen, and D. R. Dowling, “Chapter 3
- kinematics,” in Fluid Mechanics, sixth edition ed., P. K.
Kundu, I. M. Cohen, and D. R. Dowling, Eds. Boston:
Academic Press, 2016, pp. 77–108.

[10] C. R. Steele and S. Puria, “Cochlear Mechanics,” in The
Biomedical Engineering Handbook, 4th ed., J. D. Bronzino
and D. R. Peterson, Eds. Biomedical Engineering Fun-
damentals, 2014, ch. 24.

[11] N. T. Greene, H. A. Jenkins, D. J. Tollin, and J. R.
Easter, “Stapes displacement and intracochlear pressure
in response to very high level, low frequency sounds,”
Hearing Research, vol. 348, 2017.

[12] M. Koch, T. Eßinger, H. Maier, J. Sim, L. Ren, N. Greene,
T. Zahnert, M. Neudert, and M. Bornitz, “Methods and
reference data for middle ear transfer functions,” Scientific
reports, vol. 12, no. 1, pp. 1–17, 2022.

[13] H. S. Kheshgi, “Laminar flow in twisted ducts,” Physics
of Fluids A, vol. 5, 1992.

[14] A. Pantokratoras, “Steady laminar flow in a 90° bend,”
Advances in Mechanical Engineering, vol. 8, no. 9, pp.
1–9, 2016.
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