
  

  

Abstract— Kawasaki disease (KD) is a leading cause of 

acquired heart disease in children and is characterized by the 

presence of a combination of five clinical signs assessed during 

the physical examination. Timely treatment of intravenous 

immunoglobin is needed to prevent coronary artery aneurysm 

formation, but KD is usually diagnosed when pediatric patients 

are evaluated by a clinician in the emergency department days 

after onset. One or more of the five clinical signs usually 

manifests in pediatric patients prior to ED admission, presenting 

an opportunity for earlier intervention if families receive 

guidance to seek medical care as soon as clinical signs are 

observed along with a fever for at least five days. We present a 

deep learning framework for a novel screening tool to calculate 

the relative risk of KD by analyzing images of the five clinical 

signs. The framework consists of convolutional neural networks 

to separately calculate the risk for each clinical sign, and a new 

algorithm to determine what clinical sign is in an image. We 

achieved a mean accuracy of 90% during 10-fold cross-

validation and 88% during external validation for the new 

algorithm. These results demonstrate the algorithms in the 

proposed screening tool can be utilized by families to determine 

if their child should be evaluated by a clinician based on the 

number of clinical signs consistent with KD. 

 
Clinical Relevance— This screening framework has the 

potential for earlier clinical evaluation and detection of KD to 

reduce the risk of coronary artery complications. 

I. INTRODUCTION 

Kawasaki disease (KD) is an idiopathic febrile disease 
primarily affecting children younger than 5 years of age that 
leads to coronary artery aneurysms (CAAs) in about 25% of 
untreated cases [1]. It is characterized by five clinical signs: 
rash, bilateral conjunctival erythema, cervical 
lymphadenopathy, changes in the lips and oral cavity, and 
changes in the extremities. KD is the most common cause of 
acquired heart disease in children in developed countries and 
is typically diagnosed in the emergency department (ED) after 
pediatric patients are evaluated following several days of 
fever. The longer the delay before the administration of 
intravenous immunoglobin (IVIG), the standard treatment for 
KD, the greater the risk for development of CAAs. Since early 
recognition of KD is vital for timely treatment with IVIG, a 
potential solution for decreasing the risk of CAAs is to reduce 
the delay in having a clinician evaluate a child for suspicion of 
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KD. We propose to accomplish this by creating deep learning 
algorithms to screen images of potential KD clinical signs 
before a child is examined by a clinician or hospitalized. 
Parents will upload images of their child, and a 
recommendation will be made to seek medical advice if image 
analysis of the relevant clinical signs determines the child is at 
risk for KD. 

In an earlier work, we presented a deep learning algorithm 
consisting of convolutional neural networks (CNNs) to 
separately assess the presence of KD clinical signs on a dataset 
of crowdsourced and publicly available images [2]. We 
demonstrated that transfer learning using a pre-trained VGG-
16 model with ImageNet weights could accurately 
discriminate KD from similar febrile illnesses with a median 
accuracy of 82% across all signs. However, use of this 
algorithm requires classification of the clinical sign in an 
image, which would not be appropriate for families who lack 
clinical expertise. Here, we expand on the previous work by 
developing and externally validating a separate algorithm to 
automatically detect the KD clinical sign in an image before 
feeding the image into the convolution neural network for the 
classified clinical sign. We evaluate several CNN architectures 
with transfer learning as well as Vision Transformers (ViT) to 
assess their performance on this image classification task [3]. 
ViT is based on the Transformer architecture that has 
demonstrated comparable performance to CNNs with the 
advantage of fewer computational resources required for 
training [4]–[6]. 

The goal of this study was to develop a model for users 
without clinical expertise for a novel KD screening tool that 
will be made publicly available on the website of the non-
profit, parent-based Kawasaki Disease Foundation. The 
intended use of this tool is for families of children who have 
KD-like illnesses to evaluate if their child’s presentation is 
consistent with KD and take appropriate action if necessary.  

II. DATASET 

Two datasets were used: a dataset consisting of 
crowdsourced images and images available from the Internet 
as previously described [2], and a dataset of images acquired 
from patients with KD and patients with a similar phenotype  
admitted to Rady Children’s Hospital San Diego (RCHSD 
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dataset) from 2017-2022 who gave consent for photographs 
for a study approved by the University of California San Diego 
Institutional Review Board. No demographic information is 
available for the crowd-sourced dataset. There were 605 
images acquired from 164 patients in the RCHSD dataset with 
a mean age of 3.64 years (standard deviation: 2.89). 58% of 
the patients were male and ethnicity was reported as follows: 
37% Hispanic,  23% more than two races or other, 23% White, 
14% Asian, and 3% African American. For the RCHSD 
dataset, images were usually acquired by a clinician at the time 
of initial clinical encounter in the ED and prior to formal 
hospital admission. Clinicians acquired images with 
smartphones and uploaded them to a patient’s electronic health 
record using the Epic Haiku application. Only images of 
positive KD clinical signs were taken. Images were grouped 
into the five KD clinical signs and adjudicated by a pediatric 
KD specialist to ensure accuracy. The number of images for 
each clinical sign is described in Table I. Sample images from 
each dataset are presented in Fig. 1 and 2.  

TABLE I.  
NUMBER OF IMAGES PER CLINICAL CRITERIA IN EACH DATASET 

Dataset 
Clinical Sign 

Total 
Rash Eyesa Lymphb Mouthc Extremities 

Crowd-
Sourced 

450 317 140 460 537 1904 

RCHSD 72 202 47 147 137 605 

a. Eyes: bilateral conjunctival erythema, b. Lymph: cervical lymphadenopathy, c. Mouth: changes in 
the lips and oral cavity 

 

 
Figure 1.  Sample images from the crowd-sourced dataset. 

 

 
Figure 2.  Sample images from the RCHSD dataset. 
 

III. METHODS 

A. Data Preprocessing 

In the crowd-sourced dataset, images from the erythema of 
peripheral extremities and peeling of peripheral extremities 
were combined into a single extremities class. Images with any 
computer-generated text such as legends were cropped to 
remove text or excluded from the dataset if text could not be 

removed. In the RCHSD dataset, images obtained by 
clinicians from a parent’s phone or electronic screen were 
excluded.  

B. Models 

We evaluated the VGG16 [7], Big Transfer (BiT) [8], and 
Inception V3 [9] architectures with transfer learning using pre-
trained weights from ImageNet and the original ViT 
architecture [3] using pre-trained weights  from the JFT-300M 
dataset. BiT and Inception V3 perform significantly better than 
ResNet50 [10] on several image classification tasks, so we 
chose these two as well as VGG16 based on its prior use for 
classification of the individual KD clinical criteria in the 
crowd-sourced dataset for the CNN architectures. ViT utilizes 
Transformers, a self-attention based architecture dominant in 
natural language processing models [11], and takes advantage 
of the computational efficiency and scalability of 
Transformers to train large models with substantially less 
computational resources compared to CNNs. Images in a ViT 
model are split into patches and the respective linear 
embeddings are combined with position embeddings and a 
classification token as input to the Transformer encoder.  

Data was augmented using a combination of random 
horizontal or vertical flips, 90-degree rotations, and zoom by a 
factor of up to 20%. Each model was trained using the Adam 
optimizer and categorical cross entropy loss. For the CNN 
architectures, the output from the initially frozen pre-trained 
layers was pooled using the global average followed by a 
dropout layer and two feedforward layers with rectified linear 
unit and softmax activation respectively. The ViT model was 
similarly fine-tuned by removing the pre-trained classification 
head and adding feedforward layers with Gaussian Error 
Linear Unit activation and dropout layers. Class weights were 
added as a parameter during model training to address class 
imbalance. Hyperparameters optimized for each model 
included learning rate, units in the feedforward layers, number 
of epochs, dropout rate, batch size, and weight decay. Further 
hyperparameters for the ViT model included patch size, 
number of layers, number of heads, and projection dimensions. 
All models were developed in Tensorflow [12]. 

The performance of the models was assessed using 
accuracy with predictions based on the class with the 
maximum output probability. Models were evaluated using 
10-fold cross-validation [13] by dividing the crowd-sourced 
dataset into train and test sets using a 90:10 ratio. Once 
optimized parameters were identified, models were trained on 
the entire crowd-sourced dataset and externally validated on 
the RCHSD dataset.  

IV. RESULTS 

The 10-fold cross-validation performance of the models on 
the crowd-sourced dataset is summarized in Table II. 

TABLE II.  
MODEL ACCURACY DURING 10-FOLD CROSS VALIDATION. VALUES 

REPORTED AS MEAN±STANDARD DEVIATION. 

Model Accuracy 

VGG16 88.13±1.01 

 

 



  

Model Accuracy 

BiT 90.12±0.92 

Inception V3 89.87±0.86 

ViT 89.56±0.87 

 

Models had comparable performance except for VGG16 
which underperformed. The performance of the models on the 
605 images on the RCHSD dataset is summarized in Table III. 
The models accurately classified changes in extremities, 
changes in the lips/oral cavity, and bilateral conjunctival 
injection with mean accuracy across models greater than 88% 
but had difficulty with rash and cervical lymphadenopathy 
with mean accuracy below 77%. The ViT model 
underperformed the CNNs in terms of combined accuracy by 
at most 1.48%. 

TABLE III.  
MODEL ACCURACY DURING EXTERNAL VALIDATION 

Clinical 

Sign 

Model 
Mean 

VGG16 BiT Inception V3 ViT 

Rash 73.61 79.17 80.56 72.22 76.39 

Eyesa 92.08 91.58 87.62 88.61 89.97 

Lymphb 70.21 76.60 78.72 68.09 73.41 

Mouthc 88.44 87.76 87.07 91.16 88.62 

Extremities 89.78 91.24 94.89 91.97 91.97 

Combinedd 86.78 87.93 87.60 86.45 87.19 

a. Eyes: bilateral conjunctival erythema, b. Lymph: cervical lymphadenopathy, c. Mouth: changes in 
the lips and oral cavity, d. Overall accuracy across all clinical signs 

V. DISCUSSION 

Transfer learning with traditional CNNs performs well in 
discriminating between KD clinical criteria with ViT 
displaying slightly lower performance, consistent with prior 
comparisons of CNNs and ViT [4]–[6]. We did not 
benchmark more recent ViT advancements that outperform 
the base model such as a scaled ViT model [14] and token 

labeling [15] that could potentially lead to performance 
exceeding the CNNs. The worst performing clinical signs 
during external validation were rash and cervical 
lymphadenopathy. Analysis of images in the RCHSD dataset 
revealed that almost all incorrectly classified rash images 
were classified as changes in extremities and that incorrectly 
classified images of cervical lymphadenopathy were 
classified as rash.  Performance across all models is affected 
by overlap between criteria. For example, rash develops 
across the trunk and extremities [16] but can also occur on the 
face (Fig. 1). Similarly, cervical lymphadenopathy and 
changes in the lips both occur in the lower part of the face. 
There is no provided guidance for how images should be 
taken in either dataset, so variability exists in photographic 
technique and the anatomic locations of the clinical criterion 
depicted. 

Clinicians are more accurate than the reported model 
performance in determining which clinical criteria are present 
in patients [17], [18]. However, identification of findings 
traditionally requires an in-person or telemedicine encounter 
with a clinician. The advantage of the proposed screening tool 
is that families can evaluate whether they should seek clinical 
advice by simply uploading an image of their child at no cost 
and with no delay. An algorithm-driven recommendation to 
seek medical care could lead to earlier diagnosis and 
treatment of KD, thus reducing the risk of coronary artery 
complications [19]. 

We outline how the proposed tool will work in Fig. 3. First, 
one or more of the KD clinical criteria are observed in a child 
along with a minimum of five days of fever. Next, a device 
with capacity for digital image capture and upload is used to 
take a photograph of the child with sample images displayed 
in the web screening tool for guidance. If the user is uncertain 
which criteria is present in a child, the user will upload the 
image, and the model will determine the criterion before 
feeding the image into the respective CNN developed 
previously. Users also have the option of directly uploading 
their image to the appropriate CNN which will then calculate 
the KD risk for a given image. If risk exceeds a threshold, the 
tool will note that the corresponding clinical sign is present. 

Fig. 3. Schematic overview of the Kawasaki disease screening tool 



  

If two or more clinical signs are present, the tool will provide 
a recommendation to the user to seek medical attention 
because of potential risk for KD based on diagnostic 
guidelines [1], [16], [20].  

The following example demonstrates one potential use 
case. A parent observes cutaneous changes in the distal 
extremities of their febrile child who has had fever for six 
days and conducts an Internet search to evaluate potential 
diagnoses. They find the KD screening tool on the Kawasaki 
Disease Foundation website and acquire images of the 
cutaneous changes with their smartphone following provided 
instructions. The parent does not know which criteria are 
present, so the parent uploads a photograph of the forearm to 
the model which predicts that the image is most likely rash. 
The image is then passed to the rash CNN, and the presence 
of rash is confirmed. Since the cutaneous changes extend to 
the hand, a second image is uploaded. The model predicts the 
image of the hand is consistent with changes in extremities 
and passes the image to a CNN which confirms erythema of 
the palms. The KD screening tool then notifies the parent that 
two clinical criteria consistent with KD have been observed 
and to seek medical attention for their child given suspected 
risk for KD.  

There are several outstanding issues regarding the tool that 
need to be addressed. Variation in image quality and 
acquisition could impact model performance, so one solution 
is to provide a standardized set of KD clinical sign images in 
the uploading instructions to ensure consistency. Not all signs 
can be identified accurately, and the external validation 
dataset was limited in size, so limitations of the tool and non-
intended uses should also be provided. In addition, it remains 
unclear how families can be made aware of this online 
screening tool. Despite these issues, the promising 
performance of the algorithms highlights their potential to 
empower parents to take steps towards earlier KD diagnosis. 

VI. CONCLUSION 

In this study, we developed and validated a deep learning 
model to accurately identify the specific KD clinical criteria 
in an image. This model will be utilized as part of a proposed 
KD screening tool for parents without clinical expertise to 
assist in determining which downstream CNN to send an 
uploaded image from a child with KD-like symptoms. With 
the reported model performance, there is potential for this 
screening tool to reduce the risk of CAAs in patients with KD 
by enabling earlier clinical consultation and treatment with 
IVIG instead of delayed KD diagnosis. Further work is 
ongoing to implement the model within a tool on the website 
of the non-profit Kawasaki Disease Foundation 
(https://kdfoundation.org/).  
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