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Abstract— Parkinson’s disease (PD) is a progressive
neurodegenerative disease that affects over 10 million people
worldwide. Brain atrophy and microstructural abnormalities
tend to be more subtle in PD than in other age-related
conditions such as Alzheimer’s disease, so there is interest in
how well machine learning methods can detect PD in
radiological scans. Deep learning models based on
convolutional neural networks (CNNs) can automatically distil
diagnostically useful features from raw MRI scans, but most
CNN-based deep learning models have only been tested on
T1-weighted brain MRI. Here we examine the added value of
diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive
to microstructural tissue properties - as an additional input in
CNN-based models for PD classification. Our evaluations used
data from 3 separate cohorts - from Chang Gung University,
the University of Pennsylvania, and the PPMI dataset. We
trained CNNs on various combinations of these cohorts to find
the best predictive model. Although tests on more diverse data
are warranted, deep-learned models from dMRI show promise
for PD classification.

Clinical Relevance— This study supports the use of
diffusion-weighted images as an alternative to anatomical
images for AI-based detection of Parkinson’s disease.
-----------------------------------
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I. INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurological disorder worldwide, affecting over 10 million
people, and its prevalence is increasing faster than any other
neurological disorder [1]. PD is characterized by cardinal
motor symptoms including tremor at rest, rigidity and
postural instability [2]. Neuropathological abnormalities are
found at autopsy in PD, including
α-synuclein-immunopositive Lewy bodies and neurites [3],
which are associated with loss of dopaminergic neurons in
the substantia nigra pars compacta, leading to dopamine
depletion in the striatum [4]. Large-scale neuroimaging
studies have begun to identify robust stage-specific
structural brain abnormalities in PD, yielding in vivo
signatures of the disease process that mirror the anatomic
progression of neuropathology [5]. Improved biomarkers
may assist diagnosis, staging and prognosis in PD, which
now rely primarily on clinical evaluations of motor and
non-motor impairments. Machine learning has been applied
to structural brain MRI to discover metrics that best
differentiate PD participants from healthy controls, with
wide variation in performance (for a review, see [6]). As
white matter microstructure is also impaired in PD [7],
diffusion tensor imaging (DTI) may improve these models,
as abnormal DTI metrics have been reported in PD prior to
the appearance of structural brain atrophy [8].

Here we set out to classify individuals with PD versus
healthy controls, based on 3D convolutional neural
networks trained on both anatomical and diffusion MRI.
CNNs are attractive, as they can learn predictive features
from raw images. Diffusion-weighted brain MRI (dMRI) is
sensitive to subtle alterations in the brain’s microstructure
and can offer independent information on white matter
integrity that is not detectable with standard T1-weighted
MRI. Here we tested the performance of 3D CNNs for
classifying PD based on T1w MRI, as well as DTI-derived
maps of mean, radial and axial diffusivity (MD/RD/AD) and
fractional anisotropy (FA). We also tested the performance
when combining the two multimodal data types in
concatenated CNN architectures.

II. DATA

Data for this project was drawn from 3 cohorts (Table 1).

This work is licensed under a Creative Commons Attribution 3.0 License. 
For more information, see http://creativecommons.org/licenses/by/3.0/

20
23

 4
5t

h 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

79
-8

-3
50

3-
24

47
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
40

78
7.

20
23

.1
03

40
79

2



TABLE I. Demographics of the Datasets used for Training and Testing.
PD/CTL denotes the numbers of PD patients and controls. H&Y stage
denotes the Hoehn & Yahr stage - a commonly used PD staging system
where 1 denotes the most mildly impaired, and 5 the most severely
impaired.

Dataset N Age
(mean±
SD)

Sex
(F/M)

PD/
CTL

Mean
H&Y
Stage

Taiwan 529 60.6 ± 8.9 254 /
275

306 /
223

2.24

UPenn 165 66.7 ± 7.9 63 /
105

138 /
30

2.64

PPMI 183 62.7 ± 9.7 66 /
117

129 /
54

1.59

The T1-weighted brain MRI volumes were pre-processed
using a sequence of steps, including nonparametric intensity
normalization (N4 bias field correction) [9],
‘skull-stripping’ for brain extraction, registration to a
template with 6 degrees of freedom (rigid-body) registration
and isometric voxel resampling to 2 mm. The pre-processed
images were of size 91x109x91. The T1w images were
scaled to take values between 0 and 1 via min-max scaling.
DTI images were pre-processed using the ENIGMA-DTI
Pipeline, which includes image denoising, Gibbs de-ringing,
eddy current correction, echo-planar imaging (EPI)-induced
distortion correction and bias-field correction. This process
produced a DTI map of the FA, MD, RD and AD, with each
map registered to the pre-processed T1 space.

III. MODEL AND METHODS

After registering the DWI maps and T1s to a common
template, we used elastic deformation, a technique widely
used in medical image processing, to augment the training
data. We used displacement vectors and a spline
interpolation for input image deformation. The 3D CNN
architecture (Figure 1) consisted of four 3D convolution
layers with a 3x3 filter size, followed by one 3D
convolution layer with a 1x1 filter, and a final Dense layer
with a sigmoid activation function. All layers used the ReLu
activation function and Instance Normalization. Dropout
layers, with a dropout rate of 0.5, and a 3D Average Pooling
layer with a 2x2 filter size were added to the 2nd, 3rd, and 4th
layers. Models were trained with a learning rate of 1e-4, and
test performance was assessed using balanced accuracy. To
deal with overfitting, both L1 and L2 regularizers were
used, along with dropouts between layers and early
stopping. Hyperparameter tuning was performed by running
k-fold cross validation.

Four sets of experiments were run using the 3D CNN
architecture. In the first experiment, the training, validation
and test dataset for the model was a combination of the

Taiwan and UPenn datasets, while the PPMI dataset was
kept as a holdout test set. The Taiwan and UPenn datasets
were divided in the ratio 80:10:10 for training (n=557),
validation (n=70) and testing (n=70). In the second
experiment, the training, validation and test dataset for the
model was a combination of the Taiwan and PPMI datasets,
while the UPenn dataset was held out as a test set. The
Taiwan and PPMI datasets were divided in the ratio
80:10:10 for training (n=568), validation (n=72) and testing
(n=72).

In the third experiment, all datasets were combined and
divided into training (n=617), validation (n=175) and testing
(n=90) in the ratio 70:20:10. In the fourth experiment, the
datasets were combined in the ratio 80:10:10 individually to
create training (n=702), validation (n=89) and test (n=89)
sets. The same model was used for training in all four
experiments. The 3D-CNN was trained for 100 epochs with
the Adam (with weight decay) optimizer. In all four
experiments, the batch size was set to 8 and the model was
trained until the validation loss did not improve for 10
consecutive epochs. Each experiment was performed three
times, and the average values of balanced accuracy and F1
scores were retained to compare the performance.

For the concatenation, we reworked the above architecture.
The 3D CNN architecture (Figure 2) consisted of the same
four 3D Convolution layers, but after flattening, they were
concatenated and sent through a Dense Layer with sigmoid
activation function. This Y-shaped architecture uses separate
CNNs to distil predictive features from the anatomical MRI
and diffusion MRI, which are then merged for disease
classification. The same four experiments, as in the case of
single modality, were repeated for the combination of
images. The 3D-CNN was trained for 100 epochs with
Adam (with weight decay) optimizer, batch size was set to
4. The model was trained until validation loss did not
improve for 10 consecutive epochs. Each experiment was
performed three times, and average values of balanced
accuracy and F1 scores were retained to compare the
performance.

So, for the first experiment the training data was a
combination of Taiwan and UPenn dataset, with PPMI as
holdout Test dataset. The second experiment had a
combination of Taiwan and PPMI as training and UPenn as
a holdout test set. The other two experiments used
combinations of all three datasets in different proportions.



Fig. 1. 3D CNN Architecture used for training on data from a single modality (here, anatomical MRI).

Fig. 2. 3D CNN Architecture used for dual modality training.

IV. RESULTS

Among the single modality experiments, for the first
experiment, the best balanced accuracy was 0.803 for
DWI-AD with an F1 score of 0.860. This model gave a
balanced accuracy of 0.567 and an F1 score of 0.754 on the
hold-out PPMI dataset. The worst balanced accuracy was
0.537 for T1w with an F1 score of 0.797. This model gave a
balanced accuracy of 0.494 and an F1 score of 0.805 on the
hold-out PPMI dataset. For the second experiment, the best
balanced accuracy was 0.726 for DWI-RD with an F1 score
of 0.810. This model gave a balanced accuracy of 0.540 and
an F1 score of 0.872 on the hold-out UPenn dataset. The
worst balanced accuracy was 0.500 for T1w with an F1

score of 0.759. This model gave a balanced accuracy of
0.500 and an F1 score of 0.902 on the held-out UPenn
dataset. For the third experiment, the best balanced accuracy
was 0.747 for DWI-RD with a F1 score of 0.797. The worst
balanced accuracy was 0.566 for T1w with an F1 score of
0.706. For the fourth experiment, the best balanced accuracy
was 0.704 for DWI-MD with an F1 score of 0.814. The
worst balanced accuracy was 0.500 for T1w with an F1
score of 0.792. Based on the balanced accuracy, the
diffusion MRI maps always outperformed the T1w as input
data. The RoC-AUC Curves for all experiments are shown
in Figure 3-6. As these figures show, the area under the
curve is worst for T1ws as input in all experiments.



FIG. ROC-AUC Curves for single modality experiments.

TABLE II. Results for all experiments, showing balanced accuracy and F1 Scores for all modalities. The highest values are in bold.



An independent samples t-test found that the AUC of
participants in the T1w group was significantly lower than
the AUC when using DWI images in all four experiments.
For experiment 1, t(10) = -14.9 and p<0.0001. For
experiment 2, t(8) = -84.6 and p<0.0001. For experiment 3,
t(7.1) = -6.0 and p = 0.0002. For experiment 4, t(9.7) =
-14.2 and p<0.0001. Thus, in general from our experiments,
DTI measures outperformed T1w for PD classification, and
there was some evidence that the diffusivity measures
outperformed FA, but additional independent data is needed
to verify this.

For the dual modality experiments, combining T1w and
DWI-MD and DWI-AD gave the best results, compared to
the other two combinations. In most cases, the balanced
accuracy increases when a combination of T1w and dMRI

was used, relative to using T1 alone. Even so, more data
may be required to improve the accuracy of these models as
the dimension of input data is large and the amount of
training data is small: with the current amount of training
data, the balanced accuracy of the fused model is still less
than the case where DWIs are the only input; intuitively, the
fused model should be better, as it uses more information, so
long as there is sufficient data to train it. Another interesting
conclusion was that PPMI was much harder to classify as
compared to the other two datasets. This may be because the
mean H&Y stage of the patients in the three datasets is in
the following order: UPenn (2.64) > Taiwan (2.24) > PPMI
(1.59), so PPMI patients may generally have milder brain
abnormalities that those in the other datasets.

TABLE III. Results for all experiments, showing balanced accuracy and F1 Scores for all pairs of combined modalities. The highest values are in bold.

V. CONCLUSION AND DISCUSSION

In this work, we trained deep learning models to classify
individuals as PD patients or healthy controls, using 3D
CNNs and different types of brain MRI. In a novel
approach, building on [13], we tested diffusion MRI maps
as inputs and, with the methods tested, they outperformed
standard anatomical MRI. While prior studies have found
both structural and diffusion MRI abnormalities in PD, the
explicit segmentation of regions of interest often requires
time-consuming quality control and human interaction with
the data, making it hard to design a practical classifier from
these features. We explored various combinations of the
three cohorts of data, to find the best model to generalize

over new data. The best accuracy was around 0.75 for
DWI-AD, which offers a promising baseline for further
testing.

For combined modalities, due to the increase in the number
of parameters, more data is required for training and
improving the performance. Another interesting conclusion
was that given the mean H&Y stage of the three datasets is
UPenn (2.64) > Taiwan (2.24) > PPMI (1.59), PPMI is
much harder to classify, compared to the other two datasets.



VI. FUTUREWORK

Future work will train and test the methods on more diverse
datasets, and will assess how well the models generalize to
patients at different stages of PD, and with mixed diagnoses.
We will test the added value of training classifiers on more
MRI and DTI data, along with data modalities that are less
commonly collected, such as quantitative parametric MRI,
DAT-SPECT, and resting state fMRI, all of which may offer
complementary information for PD classification. We will
examine other training techniques such as transfer learning,
and other CNN variants such as DenseNet-121, which has
more depth than a standard 3D CNN. A strong PD classifier
may also serve as a guide to creating deep learning methods
for more challenging tasks, such as PD staging [10],
differential diagnosis and subtyping, predicting future
decline, and predicting response to treatment or other
interventions.
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We obtained IRB approval for this analysis of previously
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access by PPMI.
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