
  

 

Abstract— Cataract surgery remains the definitive treatment 

for cataracts, which are a major cause of preventable blindness 

worldwide. Adequate and stable dilation of the pupil are 

necessary for the successful performance of cataract surgery. 

Pupillary instability is a known risk factor for cataract surgery 

complications, and the accurate segmentation of the pupil from 

surgical video streams can enable the analysis of intraoperative 

pupil changes in cataract surgery. However, pupil segmentation 

performance can suffer due to variations in surgical 

illumination, obscuration of the pupil with surgical instruments, 

and hydration of the lens material intraoperatively. To overcome 

these challenges, we present a novel method called tensor-based 

pupil feature extraction (TPFE) to improve the accuracy of pupil 

recognition systems. We analyzed the efficacy of this approach 

with experiments performed on a dataset of 4,560 intraoperative 

annotated images from 190 cataract surgeries in human patients. 

Our results indicate that TPFE can identify features relevant to 

pupil segmentation and that pupil segmentation with state-of-

the-art deep learning models can be significantly improved with 

the TPFE method. 

 

I. INTRODUCTION 

Cataract surgery addresses the pathologic clouding of the 
natural lens of the eye through removal of the clouded lens 
material and replacement with an artificial intraocular lens 
(IOL) implant. It is one of the most commonly performed 
surgeries worldwide and essential to addressing preventable 
blindness. There were more than 20 million cataract surgeries 
performed in the world in 2015, of which 3.6 million cases 
were in the United States of America and more than 4.2 million 
cases were in the European Union [1]. Cataracts most 
commonly occur as a natural part of the aging process, but can 
also occur due to trauma, medication side effects, and 
metabolic disorders. Despite improvements in cataract surgery 
technology and the phacoemulsification procedure, cataracts 
are one of the leading causes of blindness worldwide. 

Cataracts are accessed surgically by passing instruments 
through the pupil, which is the natural aperture in the iris 
tissue. The pupil is pharmacologically dilated at the time of 
surgery, but pupillary instability during surgery is a major risk 
factor for cataract surgery complications. As such, pupil 
recognition in cataract surgery is an essential task that allows 
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surgeons to understand changes in pupil morphology during 
surgery. However, recognition performance is affected by 
many factors occurring during cataract surgery, such as 
variations in illumination, obscuration by surgical instruments, 
and hydration of cataractous lens material altering the 
appearance of the pupil itself. In the recent past, with the rapid 
development of deep learning, studies [2] – [5] proposed 
methods for pupil recognition in various scenarios, 
predominantly outside of the context of cataract surgery. 

Lee et al. [2] applied UNet model to recognize and separate 
pupil from nystagmography video achieve accurate trajectory 
of pupil for diagnosis of various vestibular disorders. The 
group showed the potential for applying deep learning 
methods to diagnosing vestibular disorders since the UNet 
model achieved 94.85% dice coefficient. In other scenarios, 
Han et al. [3] proposed an indirect use of CNN for pupil center 
detection. Accordingly, the pupil region is first segmented by 
CNN models and the center of the segmented region is then 
determined. The authors demonstrated that the proposed 
method outperforms other conventional methods that directly 
find the pupil center as a regression result. Gowroju et al. [4] 
presented a modified UNet model to improve the accuracy of 
pupil segmentation in non-surgical images. The proposed 
model achieved a notable accuracy when compared to the 
original UNet model while consuming less time. 

In the field of cataract surgery, Sokolova et al. [5] trained 
and tested a Mask R-CNN on a small (82-image) dataset of 
cataract surgery frames and showed moderate performance in 
the pupil segmentation task. This study was limited by the size 
of its dataset and the need for analysis of performance across 
varying phases of surgery and in the context of pupil 
obscuration by a variety of surgical instruments. 

In this paper, we propose a novel method called tensor-
based pupil feature extraction (TPFE) for pupil recognition in 
cataract surgery using deep learning models. The proposed 
method is designed to extract features of the pupil region 
effectively with the goal of utilizing TPFE’s feature-rich 
output as input to pupil recognition systems. In order to study 
its effectiveness, we undertook experiments to evaluate the 
segmentation performance of a set of deep learning models 
with and without TPFE pre-processing. In the subsequent 
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sections, we describe the TPFE method, report its impact on 
pupil segmentation performance in our experiments, and 
consider potential implications and future directions for this 
work. 

II. METHOD 

A. Tensor-based Pupil Image Representation 

A tensor is defined as a multilinear mapping over a set of 
vector spaces [6]. Tensors represent a higher-order 
generalization of vectors and are commonly utilized for 
multidimensional data representation. Tensors are widely used 
to represent videos, color images, and hyperspectral images 
[7]-[9] through various data arrangements. In order to ensure 
the clarity of the notation in this study, we first present the 
notation and terminology related to tensors used in this paper 
[10], [11]. 

 
(a) (b) 

 
(c) 

Fig. 1. Tensor-based pupil image construction. (a) A given color pupil 

image � ∈ ℝ���; (b) Blue, green, and red color channels �� , 
 ∈ ��, 
, �� 

of (a); and (c) The third-order tensor � ∈ ℝ����� of (a). 

i) An ���- order tensor denoted as � is formally defined as 

an element of the tensor product of � vector spaces, where 

the order N of a tensor is the number of dimensions and � ∈
ℝ������⋯���. 

ii) Fibers are the higher-order analog of matrix rows and 

columns. A fiber of tensor � can be determined by keeping 

an index, while fixing others. A third-order tensor � involves 

column, row, and tube fibers denoted as �:�� , ��:� , and ���:, 
respectively. 

iii) Slices are two-dimensional portions of a tensor. A slice 

is defined by fixing all indices but two. A third-order tensor � 

contains slices denoted as ��∷, �:�:, and �∷�, which are called 

horizontal, lateral, and frontal slices, respectively. 

iv) A tensor � ∈ ℝ������⋯���  has N ways to transform its 

data into a matrix called mode-! unfolding of tensor � or 

tensor matricization. It is denoted by �"#$, where ! ∈
�1,2, … , ��.  

v) The mode-! product is the result of the multiplication of 

a tensor by a matrix in mode-!. The mode-! product   � �# ( 

of a tensor � ∈ ℝ������⋯���with a matrix ( ∈ ℝ)��*  is a 

tensor of size "�+ � ⋯ � �#,+ � - � �#.+ � ⋯ � �/$. 

Therefore, we have 

"� �# ($0�⋯0*1�20*3�⋯0� 4  5 60�0�⋯0�720* 

��

0*

. (1) 

In this study, to effectively exploit the relationship among 

color channels and spatial information, we construct a third-

order tensor with three frontal slices denoting three color 

channels of a given color pupil image. In particular, given a 

color pupil image denoted � ∈ ℝ��� of size ℎ � :, it is split 

into �; , �<, and �=, which correspond to the three-color 

channel images in RGB color space. A third-order tensor 

denoted as � ∈ ℝ����� sized ℎ � : � 3 is then constructed 

by adopting each color channel �� , 
 ∈ ��, 
, �� to be a frontal 

slice �∷�, as depicted in Fig. 1. 

B. High-Order Singular Value Decomposition of a Color 

Pupil Image 

A given �-order tensor  � ∈ ℝ������⋯���  can be expressed 
as a linear combination of the outer products in different 
modes. Specifically, the high-order singular value 
decomposition (HOSVD) expresses tensor � ∈ ℝ������⋯��� 
as follows: 

� 4 ? �+ ("+$ �@ ("@$ �� ⋯ �/ ("/$. (2) 

It can also be expressed elementwise as: 

�0�0�⋯0� 4 5 5 ⋯
��

2�A+
5 B2�2�⋯2�70�2�

"+$ 70�2�
"@$ ⋯ 70�2� 

"/$
��

2�A+

��

2�A+
, (3) 

where ? ∈ ℝ������⋯��� denotes the core tensor, which has the 

same size with the given tensor �. ("#$ ∈ ℝ�*��* , ! 4
 �1,2, ⋯ , �� are matrices containing the left singular vectors 

of the mode-! unfolding matrices �"#$ of tensor  �. These 

matrices ("#$ are also called inverse factors and determined 
through singular value decomposition of mode-! unfolding 

matrices �"#$ as follows: 

�"#$ 4 ("#$∑"#$D"#$E, (4) 

where ∑"#$ denotes the singular value matrices and  

D"#$ contains the right singular vectors of �"#$. Furthermore, 

the core tensor denoted ? is determined by: 

? 4  � �+ ("+$E �@ ("@$E �� ⋯ �/ ("/$E. (5) 

 

 
                     (a) 

 
(b) 

 
           (c) 

 
(d) 

Fig. 2. The results of HOSVD decomposition of a third-order tensor � ∈
ℝ����� in Fig. 1(c). (a) Inverse factor ("+$; (b) Inverse factor ("@$; (c) Inverse 

factor ("�$; and (d) Core tensor ?. 



  

As with the given tensor, �, mode-! unfolding matrices 

F"#$ of the core tensor ? can be obtained by: 

F"#$ 4 ∑"#$D"#$G("/$⨂ ⋯ ⨂("#.+$⨂("#,+$⨂ ⋯ ⨂("+$I,  (6) 

where ⨂ denotes the Kronecker product of two matrices. At 

the end, a mode-! unfolding matrix �"#$ of the given tensor � 

can be reconstructed by: 

�"#$ 4 ("#$F"#$G("/$⨂ ⋯ ⨂("#.+$("#,+$⨂ ⋯ ⨂("+$IE . (7) 

In this study, we first construct a third-order tensor � ∈
ℝ����� of a given pupil image � ∈ ℝ���as discussed in 

subsection II-A. By using HOSVD, � is then decomposed 

into multiple components: three inverse factors denoted 

("+$, ("@$, and ("�$ and a core tensor ?,  as depicted in Fig. 

2. HOSVD decomposition is briefly presented in Algorithm 

1.  

Algorithm 1: HOSVD 

Input: A Color Pupil Image � ∈ ℝ��� 

Output: ("+$, ("@$, ("�$ , and ? 

1. �� , 
 ∈ ��, 
, �� ← Split"�$; 

2. � ∈ ℝ����� ←  Reshape (��$; 

3. 
KL"("#$, ∑"#$, D"#$$ via Eq. (4); 

4. 
KL"F"#$$ via Eq. (6); 

5. ?  Reshape (F"#$) 
6. Return ("+$, ("@$, ("�$, ?. 

C. Tensor-based Pupil Feature Extraction 

In this study, we investigated the information carried by 

elements of inverse factor ("�$ and sought to emphasize 

elements of ("�$ seen to carry pupil-related information and 
de-emphasize elements seen to carry noise and background 
data. The feature-extracted image was then obtained by 

inverting HOSVD with the original ?, ("+$, ("@$ and a 

modified (�
"�$

. 

 

Fig. 3. The information of Fig. 1(a) carried by nine elements of inverse 

factor ("�$ ∈ ℝ���. The position of the image corresponds to the location 

of the investigated element in ("�$. 

The results of the mentioned analysis are depicted in Fig. 

3. As seen, three elements in the first column of ("�$ can 
reconstruct much of the three color channels, which are blue, 
green, and red, of the given input image. Accordingly, both 
pupil and interference information are mostly present and 
would be recovered from these elements. On the other hand, 
information specific to the pupil region appears to be present 
within the elements of the second column of the inverse factor  

("�$. As seen in Fig. 3, the third column of ("�$contains 
primarily interference information. 

 
(a) 

 
(b) 

Fig. 4. Result of the proposed pupil feature extraction based on tensor.  
(a) Original images from different cataract surgeries. (b) Feature images of 
(a) by the proposed method. 

In order to highlight the pupil region and eliminate the 

interference information in the given image, the elements of 

the first column were de-emphasized by subtracting off the 

mean of three elements. The proposed feature extraction 

algorithm is briefly presented in Algorithm 2 and the result of 

the proposed method is depicted in Fig. 4. 

Algorithm 2: TPFE 

Input: Pupil Image � ∈ ℝ��� 

Output: Feature Image M ∈ ℝ��� 

1. N("+$, ("@$, ("�$, ?O ← Algorithm 1 "�$; 

2. P ← meanN("�$"1,1$, ("�$"2,1$, ("�$"3,1�O ; 

3. ("�$"Q, 1$ 4 "("�$"Q, 1$ R  P$, Q ∈ �1,2,3�; 

4. 
KL S�"#$
"T$U, ! ∈ �1,2,3� via Eq. (7). 

5. �"T$ 4 V�∷�,�A+,@,⋯,+@
"T$ W ← Reshape S�"#$

"T$U; 

6. M� , 
 ∈ ��, 
, �� ← Reshape (�"T$$; 

7 M ← Merge "M; , M<, M=$; 

8 Return M. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A.  Dataset 

To evaluate the performance of the proposed method, we 

adopted a dataset consisting of 4,560 intraoperative images of 

size 480×270 pixels from 152 cataract surgeries, which were 

performed by surgeons at Kellogg Eye Center, University of 

Michigan from 2020 to 2021. The pupil region on the images 

was manually annotated using MATLAB version R2022a. The 

study was approved (HUM00160950) by the Michigan 

Medicine IRB in May of 2019 and was carried out in 

accordance with the tenets of the Declaration of Helsinki. 

B. Pupil Recognition by Deep Learning Models 

In order to assess performance of the proposed framework 

in improving the accuracy of pupil recognition, we adopted six 

state-of-the-art deep learning models: Xception [12], HR-Net 

[13], DeepLabV3+ [14], FPN [15], UNet [16], and LinkNet 

[17], each with VGG16 [18] as the backbone network for our 

experiments. The selected models were all pre-trained on 

ImageNet dataset [19] to reduce training time. 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The dataset was randomly split into training and validation 

subsets consisting of 75% and 25% of the dataset, respectively. 
Thus, 3,420 images from 114 videos were included for 
training, 1,140 images from 38 videos were included for 
validation. Separate instances of each deep learning model 
were trained using either the original images or the feature 
images. A batch size of 8 and a learning rate of 10,Y were 
fixed for training. We trained each for a maximum of 100 
epochs corresponding to 42,700 training iterations. To this 
end, precision, recall, Intersection over Union, and Dice 
coefficient of all six models on the validation set were 
compared with and without use of the feature-extracted 
images. The results of the experiments are shown in Table I. 
As seen, the accuracy of the deep learning models is 
considerably improved when combined with the proposed 
feature extraction TPFE method. Each of the 6 models tested 
demonstrated a statistically significant improvement in 
performance (p << 0.05 on Wilcoxon [20] signed rank testing) 
when utilizing the method. 

IV. CONCLUSION 

In this paper, we have proposed a novel feature extraction 

method named TPFE for pupil recognition systems in cataract 

surgery using deep learning models. The effectiveness of 

TPFE was comprehensively demonstrated through a set of 

experiments using state-of-the-art deep learning models. The 

results reveal that the accuracy of pupil recognition systems 

in cataract surgery can be significantly improved through 

utilization of the proposed TPFE method. 
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TABLE I 

SEMANTIC SEGMENTATION RATE (%) OF DEEP LEARNING MODELS ON VALIDATION SET 

0BNETWORK ARCHITECTURE Precision (%) Recall (%) IoU (%) Dice (%) 

Xception 99.28 81.92 81.75 89.29 

Xception + TPFE 98.97 85.71 85.37 91.50 

HR-Net 99.24 86.88 86.72 92.36 

HR-Net + TPFE 99.31 89.36 89.16 93.84 

DeepLabV3+ 99.37 86.71 86.58 92.39 

DeepLabV3+ + TPFE 99.13 89.49 89.21 93.95 

FPN 99.38 88.78 88.62 93.53 

FPN + TPFE 99.45 88.97 89.20 93.88 

UNet 99.33 87.79 87.62 92.96 

UNet + TPFE 99.20 89.01 88.79 93.58 

LinkNet  99.35 88.35 88.18 92.30 

LinkNet + TPFE 99.10 89.50 89.21 93.83 


