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Abstract— Hospitalized patients sometimes have complex
health conditions, such as multiple diseases, underlying diseases,
and complications. The heterogeneous patient conditions may
have various representations. A generalized model ignores the
differences among heterogeneous patients, and personalized
models, even with transfer learning, are still limited to the
small amount of training data and the repeated training process.
Meta-learning provides a solution for training similar patients
based on few-shot learning; however, cannot address common
cross-domain patients. Inspired by prototypical networks [1],
we proposed a meta-prototype for Electronic Health Records
(EHR), a meta-learning-based model with flexible prototypes
representing the heterogeneity in patients. We apply this tech-
nique to cardiovascular diseases in MIMIC-III and compare it
against a set of benchmark models, and demonstrate its ability
to address heterogeneous patient health conditions and improve
the model performances from 1.2% to 11.9% on different
metrics and prediction tasks.

Clinical relevance— Developing an adaptive EHR risk predic-
tion model for outcomes-driven phenotyping of heterogeneous
patient health conditions.

I. INTRODUCTION

Machine learning has increasingly focused on implement-
ing clinical risk prediction models utilizing data from elec-
tronic health records (EHRs) to provide clinical predictions.
These predictions on individual patients, in turn, support
decision-making for doctors [2], [3]. However, given the
large and sparse nature of EHR data [4], most models use
homogenized input spaces, and static windows of observa-
tion [4], [5], despite complex health conditions requiring
data representing a variety of co-morbidities, data sources
(vitals and laboratory examinations), and admission lengths.
Clinical subgroup assignment, for example, may better iden-
tify which patients benefit the most from treatments [6],
[7]. Therefore, the variety of data representations leads to
the need for general models that handle data across these
complex medical scenarios.

The complexity of the health conditions of hospitalized
patients has led to the development of personalized models
[8], [9], and Oikonomou et al. proposed a phenomapping
strategy that leverages information from all trial partici-
pants to phenotype individuals [10]. Personalized models
are limited in available training data, and even with the
assistance of transfer learning, it is still not optimal to
train multiple models for each patient. Therefore, meta-
learning [11] has been applied to EHR-based risk prediction
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models with limited training data to create fewer general
models that apply across the varied personal settings[12],
[13], but these methods pre-define each patient into one
certain domain, and ignores patients’ known or unknown
health conditions that may result in potential cross-domain
patients. Snell et al. proposed prototypical networks with
a linear reinterpretation model [1] and Boniolo et al. built
prediction models through patient similarity to address this
limitation of meta-learning [14]; however, they do not have
representative prototypes and flexible alignments for the
heterogeneous patients’ health conditions. Inspired by these
works, we introduce meta-prototype networks to develop
risk prediction models by leveraging patient heterogeneity
through trainable prototypes, representations of the hetero-
geneous patient conditions, rather than selecting against it.

In this paper, we propose meta-prototype, a meta-learning-
based adaptive EHR risk prediction model leveraging hetero-
geneous patient health conditions. Meta-learning is applied
to train models for similar patients, and a trainable proto-
type network is introduced to represent flexible phenotype
alignments for patients. We apply our model to a variety of
patients in the MIMIC-III intensive care unit (ICU) dataset
with diagnosed cardiovascular conditions, treating each car-
diovascular disease as a prototype, and obtain improvements
of 1.2% and 2.4% in the area under the receiver operating
characteristics (AUROC), 11.9% and 3.7% in the area un-
der Precision-Recall (AUPRC) for decompensation and in-
hospital mortality respectively, and 2.2% in Cohen’s Kappa
score and 6.7% in the mean absolute difference (MAD) for
the task of length-of-stay.

II. RELATED WORK

Machine learning has been widely applied in building risk
prediction models from EHR data. Cheng et al. proposed an
EHR risk prediction model by extracting meaningful features
[15], and Harutyunyan et al. built a multi-task learning model
for clinical prediction with time-series EHR variables [5].
These are models that work generally on patients across
the EHR with homogenized input lengths and variables. Suo
et al. focused on learning similarities between patients and
built a personalized disease prediction model [8], and Liu
et al. applied transfer learning to address the diminishing
data problem in personalized models [9]. However, these
personalized approaches are still limited to patients who
do not have a great number of data, for example, early
admitted patients. Zhang et al. proposed DynEHR, a few-shot
learning approach to address the various lengths of EHR data
[13], and Zhang et al. applied meta-learning to CNNs and
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Fig. 1. Meta-prototype framework. The prototypes are trained through
meta-learning, and a prototype network is trained for prototype alignment.
During testing, the prototype network decides which prototype-specific
network is activated for the final prediction.

Long-Short Term Memory (LSTM) for low-resource EHR
models [12]. However, patients’ health conditions are usu-
ally complex. Many patients are admitted to hospitals with
multiple diseases or complications, and these meta-learning-
based methods do not leverage this phenotypic information
that come with observationally-selected variables based upon
clinical courses of treatment.

III. METHODS

In this section, we introduce our work in two parts:
training meta-prototype and generating risk prediction with
our meta-prototype. Figure 1 illustrates a framework of our
model.

A. Meta-prototype training

Given a model F with a feature extractor Fθ and a
predictor Fη , θ and η are used to indicate their parameters
respectively. In a time-series setting, we apply an LSTM
for the feature extractor and fully-connected layers for the
predictor. For a data point x and its label y, the learning cost
of our model is represented as:

Lθ,η = L(Fθ;η(x), y). (1)

Let D be a set of prototypes. In each episode of training
the meta-prototype, a subset D′ of prototypes is randomly
sampled (D′ ⊆ D). For each prototype i in D′, a model
Fθi;ηi is first initialized from the meta-learner Fθ;η , and the
cost Lθi;ηi

for this prototype can be calculated according to
Equation 1 on a randomly sampled support set. The model
for prototype i can then be adapted to Fθ̄i,η̄i

from Lθi;ηi

with a few steps:

θ̄i = θi − τ∇θiLθi;ηi , η̄i = ηi − τ∇ηiLθi;ηi ,

where τ is a learning rate.
After the adapted model is obtained, a query set from

prototype i is then sampled and applied on Fθ̄i;η̄i
to calculate

a cost Lθ̄i;η̄i
from Equation 1.

With the meta-learning-based training approach for the
prediction models of multiple prototypes, it is still not clear
what these prototypes are. Instead of using the mean of

the embedded examples [1] or a certain example [16], we
introduce a linear prototype network Fϕ, a fully-connected
network without a bias, as the trainable prototypes, and
each column ϕj can represent a prototype. In each training
episode, a set of data points x and their prototype label c
are sampled. The representation of x is calculated from the
extractor Fθ (without any adaptation, in order to have a fair
comparison among different prototypes), and the prototype
network Fϕ is used to align the data to certain prototypes.
The prototype network can be trained from

L̂θ,ϕ = H(Fθ;ϕ(x), c),

where H denotes a cross-entropy loss function and c is a
ten-class cardiovascular disease phenotype for each patient.

After collecting the prototype classification cost L̂θ;ϕ and
the query set cost Lθ̄i;η̄i

from all the sampled prototypes D′,
the meta-learner Fθ, Fη , and prototype network Fϕ can be
optimized as:

θ = θ − µ(

D′∑
i

∇θLθ̄i;η̄i
+∇θL̂θ;ϕ),

η = η − µ

D′∑
i

∇ηLθ̄i;η̄i
, ϕ = ϕ− µ∇ϕL̂θ;ϕ,

where µ is another learning rate.

B. Risk prediction with meta-prototype

Before making predictions, the prototype-specific network
Fθ̄i;η̄i

for each prototype is first adapted from the trained
meta-learner with their corresponding support set. Given a
data point x, the prototype alignment β is calculated from
Fθ;ϕ, and then calculate a mask αi for each prototypes i
(i ∈ D) using Top-k [17], [18]:

β = Fθ;ϕ(x), αi =

{
1 if βi in top k value of all β
0 otherwise.

A final prediction can be generated from the prototype masks

p(x) =

D∑
i

αi · Fθ̄i;η̄i
(x)

IV. EXPERIMENTS

A. Dataset and data preprocessing

Medical Information Mart for Intensive Care (MIMIC-
III) is a publicly available EHR dataset [19] which collects
53,423 adult patients admitted to Beth Israel Deaconess
Medical Center intensive care units (ICUs) between 2001
and 2012. We apply our proposed method meta-prototype
on MIMIC-III, focusing on cardiovascular diseases. From
the MIMIC-III ICD-9 diagnosis table and its HCUP CCS
category [5], ten cardiovascular diseases (or conditions com-
mon to cardiovascular-related complications) are retained, as
shown in Table I. We treat each disease here as a prototype
when building our meta-prototype, and a patient may be
aligned to one or multiple prototypes.



TABLE I
CARDIOVASCULAR CONDITION CATEGORIES

Index Category
0 Acute and unspecified renal failure
1 Acute cerebrovascular disease
2 Acute myocardial infarction
3 Cardiac dysrhythmias
4 Chronic kidney disease
5 Congestive heart failure; nonhypertensive
6 Coronary atherosclerosis and related
7 Essential hypertension
8 Hypertension with complications
9 Shock

There are 17 charted observations and laboratory mea-
surements selected formatting 76 features (one-hot encoding
for categorical measures and numeric values for continuous
measurements) [5] as the input of our model. The irregular
data is split into a series of one-hour time windows without
overlapping. The average values are calculated if there is
more than one data point in a window, and missing data is
imputed with the most recent values. In order to apply mini-
batch optimization in training, zeros are padded at the end
of shorter sequences.

B. Prediction tasks and evaluation

We test our model on three prediction tasks based on
MIMIC-III: decompensation (rapid deterioration of patient
conditions), the length of stay in the intensive care unit
(ICU), and in-hospital mortality. Decompensation and in-
hospital mortality are binary classification tasks. Decom-
pensation has 13.5% of positive examples, and in-hospital
mortality has 2.1%. Therefore, in addition to the evaluation
metric of AUROC, we also introduce AUPRC to evaluate
these two imbalanced classification tasks. The length-of-stay
is framed as a multi-class classification problem [5]. Cohen’s
Kappa score and MAD are used to evaluate this task.

C. Model implementation and baseline models

In the experiments, we set the hidden size of the LSTM-
based feature extractor Fθ to be 128, and apply a one-
layer fully-connected network for the predictor Fη . As we
discussed in the previous sections, a fully-connected network
without bias is used as the prototype network Fϕ. The
dataset is split into a 70% training, a 15% validation set,
and a 15% test set, with 10 repeated experiments. In each
training episode, we randomly sample five prototypes and
train each prototype-specific model Fθi;ηi with five steps,
and the model adaptation when making prediction has five
steps as well. The prototype-specific model training has a
learning rate τ of 0.005, and the training of the meta-learner
has a learning rate µ of 0.0005. For the Top-k mechanism,
we run hyperparameter tuning experiments and set k to be
four. This study is implemented in Python 3.6, PyTorch
1.3.1, NumPy 1.18, scikit-learn 0.21 on the server of 2 Xeon
2.2GHz CPUs, 8 GTX 1080ti GPUs, and 528 GB RAM.

To understand the performance of meta-prototype, we
compare our model with five baseline models: a logistic

regression model with grid search for penalty and regular-
ization strength, an attention-based transformer model [20],
an LSTM model, a phased LSTM (p-LSTM) for time-
series irregularity [21], and a meta-learning model [11], [13]
with fixed prototypes obtained directly from cardiovascular
diseases phenotype labels (MAML). The transformer model
has query and value sizes of eight, two heads, two blocks,
and attention size 12. The LSTM and p-LSTM models both
have hidden size 128, and the MAML model is built based
on the same structure of LSTM. The learning rates for deep
neural network models are 0.0005.

D. Experimental results

Table II shows the results of our experiments. For MAML
and our meta-prototype, we calculate the average perfor-
mance from all the prototypes (diseases) and their standard
deviations. From the table, our meta-prototype has great
improvements on all three tasks over all baseline models.
For the binary classification tasks decompensation and in-
hospital mortality, our model has higher values for both
AUROC and AUPRC, especially AUPRC. The significant
improvement on AUPRC shows the ability of our model
to address the imbalanced datasets and implies a higher
sensitivity of our model in predicting at-risk patients and
a potential for better performance in saving patients’ lives.
For length-of-stay, the higher value of the Cohen’s Kappa
score of our model indicates higher inter-annotator agree-
ments between our predictions and the ground truth, and the
lower MAD value additionally reinforces the lower errors
of predicting the remaining length of stay in ICUs. When
comparing the meta-learning-based models MAML and our
meta-prototype with their base model LSTM, we can observe
that MAML is sometimes even worse than the LSTM (on
decompensation), showing the limitation of vanilla meta-
learning in addressing the cross-domain situation, and fur-
ther indicating the flexibility of meta-prototype in prototype
alignment in complex situations.

Figure 2 is a heatmap of the Top-k masking in the task
of in-hospital mortality. Y-axis is the ten cardiovascular
prototypes, and x-axis is the predicted masking from the
prototype network and Top-4 mechanism. We observe that
the prototype network can predict various prototypes.

Fig. 2. A heatmap for in-hospital mortality Top-k masking. The indexes
of prototypes align with Table I.



TABLE II
AVERAGE PERFORMANCE (AND STANDARD DEVIATIONS) ON MIMIC-III

Task Decompensation Length-of-stay In-hospital Mortality

Evaluation AUROC AUPRC Kappa MAD AUROC AUPRC

LogisticRegression 0.816 (0.016) 0.231 (0.026) 0.346 (0.008) 163.8 (10.9) 0.795 (0.011) 0.492 (0.019)
Transformer 0.837 (0.012) 0.241 (0.019) 0.371 (0.019) 160.0 (6.9) 0.829 (0.012) 0.497 (0.013)
LSTM 0.848 (0.009) 0.278 (0.012) 0.405 (0.013) 156.2 (6.4) 0.835 (0.011) 0.500 (0.010)
P-LSTM 0.836 (0.007) 0.207 (0.014) 0.382 (0.008) 152.4 (7.8) 0.834 (0.006) 0.504 (0.009)
MAML 0.837 (0.007) 0.269 (0.011) 0.404 (0.005) 152.7 (4.9) 0.836 (0.04) 0.535 (0.007)

Meta-prototype 0.858 (0.008) 0.311 (0.009) 0.413 (0.006) 141.9 (5.5) 0.856 (0.005) 0.555 (0.008)

V. LIMITATIONS AND FUTURE WORK

In this study, we evaluate our proposed model within
cardiovascular diseases, and we plan to expand the exper-
iments to other diseases, or a cross-domain setting among
different types of diseases (e.g., cardiovascular and diabetes).
In addition, the current prototype network is limited to a
pre-defined number of prototypes and therefore needs to be
re-trained if a new condition is included. In the future, we
also look forward to modifying the prototype network to be
flexible to growing prototypes.

VI. CONCLUSION

Patients in the hospital often have complex health condi-
tions, such as multiple diseases, complications, or underlying
diseases. A generalized model cannot represent the varia-
tion among different diseases, and personalized models are
limited to the amount of training data and tedious training
process. In this paper, we propose meta-prototype networks,
applying meta-learning to similar patients, and then introduce
a trainable prototype network to represent the prototypes.
We test our meta-prototype on cardiovascular diseases in
MIMIC-III, and outperform on all three prediction tasks,
especially in predicting risky patients.
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