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Abstract—Unobtrusive sleep position classification is essential
for sleep monitoring and closed-loop intervention systems that
initiate position changes. In this paper, we present a novel
unobtrusive under-mattress optical tactile sensor for sleep po-
sition classification. The sensor uses a camera to track particles
embedded in a soft silicone layer, inferring the deformation of the
silicone and therefore providing information about the pressure
and shear distributions applied to its surface.

We characterized the sensitivity of the sensor after placing it
under a conventional mattress and applying different weights
(258g, 500g, 5000g) on top of the mattress in various
predefined locations. Moreover, we collected multiple recordings
from a person lying in supine, lateral left, lateral right, and prone
positions. As a proof-of-concept, we trained a neural network
based on convolutional layers and residual blocks that classified
the lying positions based on the images from the tactile sensor.

We observed a high sensitivity of the optical tactile sensor:
Even after placing the sensor below a conventional mattress, we
were able to detect our lowest test weight of 258g. Using the
neural network, we were able to classify the four sleep positions,
lateral left, lateral right, prone, and supine with a classification
accuracy of 91.2%.

The high sensitivity of the sensor, as well as the good
performance in the classification task, demonstrate the
feasibility of using such a sensor in a robotic bed setup.

Clinical Relevance— Positional Obstructive Sleep Apnea is
highly prevalent across the general population. Today’s gold stan-
dard treatment of using CPAP ventilation is often not accepted,
leading to unwanted treatment cessations. Alternative treatments,
such as positional interventions through robotic beds are highly
promising. However, these beds require reliable detection of
the lying position. In this paper, we present a novel, scalable
and completely unobtrusive sensor that is concealed under the
mattress while classifying sleeping positions with high accuracy.

I. INTRODUCTION

Obstructive Sleep Apnea (OSA) is a condition characterized
by a recurring collapse of the upper airways during sleep
leading to a reduced or complete blockage of airflow. The
severity of OSA is measured through the Apnea-Hyponpea
Index (AHI) which is calculated by dividing the number of
apnea and hypopnea events by the total number of hours of
sleep. A normal AHI is below 5 events per hour, while an
AHI of 15 or higher is considered indicative of sleep apnea.
Sleep apnea is often underdiagnosed. According to estimates,
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Fig. 1: Intelligent Sleep Apnea Bed (ISABel): The bed has a motorized
backrest and can gently lift the trunk of the user to reduce sleep apneas.

over 93% of women and 82% of men in the adult employed
population with moderate to severe sleep apnea have not been
clinically diagnosed [1]. This is especially problematic as sleep
apnea is associated with an increased risk of hypertension, type
two diabetes mellitus, heart failure, stroke, and death [2], [3],
[4], [5]. The gold-standard treatment for patients with OSA
is the use of a CPAP mask through which a positive pressure
during the end-expiratory phase is applied to keep the airways
open. However, correct usage of this mask requires a tight fit
and continuous wearing during the entire night. This leads to
an overall low acceptance [6], [7].

In patients with Positional Obstructive Sleep Apnea
(POSA), the majority of apnea events occur in supine position
[8]. For these patients, modern treatment approaches include
positional interventions that prevent the users from sleeping in
supine position. The ISABel I (Sensory-Motor Systems Lab,
ETH Zurich, Switzerland, Figure 1) is a trunk-elevating bed
that can change the position of the user during sleep [9]. For
such a bed to work closed-loop, it is essential to detect the
position of the user without influencing sleep quality or raising
privacy concerns. Current sensors that classify the sleeping
position are often based on accelerometers that are physically
attached to the user and might induce discomfort. Existing
unobtrusive pressure sensors integrated into the bed often
have limited resolution, suffer from crosstalk, provide limited
accuracy, or induce electromagnetic fields that can interfere
with measurement equipment. [10].

In this work, we present a novel and completely unobtrusive
sensor that is based on a rescaled highly sensitive (mN) optical
tactile sensor, originally developed for robotic manipulation.
([11], [12], [13], [14], [15]). Next to their high sensitivity,
optical sensors can provide a much higher resolution than
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current piezoelectric sensors [10]. Compared to other optical
tactile sensors [16], [17], the sensing principle described in
[11] and utilized here is particularly suitable for large-scale
sensing, because it leverages uncomplicated light and marker
placement.

II. METHODOLOGY

A. Sensor Design and Material Choice

The new sensor comprised four layers (Figure 3): a soft
silicone layer that embedded a spread of clear polyethylene
particles (b) was placed on top of a harder clear silicone layer
(c), which supported the soft layer and additionally served
for uniform light diffusion. These two silicone layers were
placed on top of a clear acrylic sheet layer (d) that further
increased the structural integrity. On top of the three layers,
each of which was 5mm thick, a thinner black silicone layer
(a) shielded the top surface from ambient light. The purpose
of the particles within the soft silicone layer was to enable
the tracking of the deformation of the silicone caused by the
external forces applied to the top surface. From a pinhole-
camera simulation, we determined that approximately 10,000
particles with a diameter of 1.4mm were required. To ensure
uniform distribution after stirring the particles inside the soft
silicone, we selected particles with a density of 0.96 g/cm3

to 0.98 g/cm3, similar to the density of the soft silicone
layer, such that the particles remained in place after mixing.
A black curtain (e) was installed around the camera (ELP
USBFHD06H) to block out any remaining ambient light and
make the sensor invariant to external light conditions. We
placed the camera 28 cm below the acrylic sheet to capture
the entire area and configured the camera to record frames
at 30 fps with a resolution of 640 px × 480 px. To provide
constant illumination of the particles for the camera, a band of
cold-white LEDs was installed around the soft silicone layers
(Figure 2(a)).

(a) The sensor has dimensions of
50 cm × 80 cm and is mounted on
aluminium profiles.

(b) A conventional standard-sized
mattress was placed on top of the
sensor.

Fig. 2: Test setup

For manufacturing the sensor, an open-mold approach was
used to cast the silicone layers. The plexiglass sheet with added
sidewalls served as the mold where the silicone was directly
poured into. The LED band was attached to the inside of the
sidewalls of the mold. The silicone layers were poured into
the mold one after the other, leaving a period of at least 24
hours in between for curing. After all the layers were fully

Mattress
a)

b)

c)

d)

e)

Fig. 3: Cross-sectional view of the sensor setup: a) a thin black silicone layer
to block out ambient light; b) a soft silicone layer with embedded particles
(Cospheric, United States); c) a harder clear silicone layer; d) an acrylic sheet
to support the silicone layers; e) curtain to block out ambient light. The camera
is mounted below the acrylic sheet, looking upwards.

cured, the sidewalls were removed, leaving only the silicone
and the LED band on the clear plexiglass sheet.

We fabricated the sensor for an area of 50 cm × 80 cm
and placed it in the region of the chest and shoulders under
the mattress. This placement was chosen as we expected the
highest pressure values and therefore the most distinct features
from the arms, shoulders, and shoulder blades.

(a) Bottom of the sensor without re-
inforcement bars.

(b) Bottom of the sensor with rein-
forcement bars.

(c) Frame captured in setup without
reinforcement bars. Colors inverted
for better visibility.

(d) Frame captured in setup with re-
inforcement bars.

Fig. 4: Overview of the two configurations that were compared. The configura-
tion without reinforcement had a higher particle visibility while the reinforced
configuration had a higher stiffness.

B. Sensor Stiffness and Particle Visibility

Due to the large dimension and the flexibility of the sili-
cone and the plexiglass sheet, locally applied pressure led to
deformations of the entire sensor base.



in
pu

t
tw

o-
ch

an
ne

l
im

ag
e

7×
7

co
nv

,c
=

4
,s

=
2
,p

=
3

3×
3

m
ax

po
ol

in
g,

s
=

2
,p

=
1

re
si

du
al

bl
oc

k,
c
=

8
,s

=
1

re
si

du
al

bl
oc

k,
c
=

1
6
,s

=
2

re
si

du
al

bl
oc

k,
c
=

3
2
,s

=
2

re
si

du
al

bl
oc

k,
c
=

6
4
,s

=
2

sp
at

ia
l

av
er

ag
in

g

64×4
fully connected

cl
as

s
pr

ob
ab

ili
tie

s

Fig. 5: Learning architecture with the residual blocks depicted in Figure 6. Instance normalization was used after each convolutional layer. This was always
followed by rectified linear units (ReLUs), with the exception of the layers undergoing the sum operation in the residual blocks, where the ReLU was only
applied after the sum. The spatial averaging layer performs the channel average across all pixels, with the resulting 64 values stacked together before being
fed to the fully connected layer. The latter is followed by a softmax activation function that outputs class probabilities.

To reduce this effect, which can hinder proper detection
of local deformation, we increased the overall stiffness of
the base by adding aluminium reinforcement bars below the
plexiglass sheet (Figure 4). However, this reduced the area of
visible particles in the camera frame. To assess the tradeoff
between increased stiffness and reduced particle visibility, we
applied various weights (258 g, 500 g, 5000 g) to the center of
both configurations. For each of these configurations, we used
Otsu-thresholding to identify the pixels that showed the most
significant difference in intensity between the deformed and
the undeformed state [18]. Then we averaged the coordinates
of all the pixels that passed this threshold. The intuition is that
this operation provided a simple measure of the region where
the particles underwent the highest change.

C. Dataset for Supervised Learning

We obtained four 10-minute recordings of one of the authors
(male, 73 kg, 187 cm), complying with all the relevant national
regulations, institutional policies, and following the ethical
principles outlined in the Helsinki Declaration of 1975, as
revised in 2000. In every recording, the positions (supine,
prone, lateral left, lateral right) were kept for 25 seconds before
repositioning. These four sleep positions represent the labels of
the supervised learning setup discussed in Section II-D. During
the entire recording, we used an ambulatory polysomnography
(Nox A1, Nox Medical), to record ground-truth position labels.
After removing the repositioning phases from the recorded
data, we obtained a total of 44,136 labeled RGB frames. In this
dataset, equal amounts of datapoints were divided among the
four classes. All the frames were then processed, by converting
them to grayscale images and resizing them to a resolution of
160 px × 120 px for the sake of efficient inference.
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Fig. 6: Residual blocks of the learning architecture shown in Figure 5. All the
blocks in green serve as placeholders. “3×3 conv” indicates a convolutional
layer with a 3×3 filter size, with c, s, and p denoting the number of output
channels, stride, and size of zero-padding, respectively.

D. Sleep Position Classifier

We trained a neural network to classify the sleep position
of the person on the mattress according to the four classes
defined above. The inputs to the neural network were two-
channel images, one being the processed grayscale frame of
the collected dataset, and the other being the grayscale frame
captured at rest, before the person started to deform the sensor
under the mattress. The purpose of the image at rest was
to provide the network with information about the particle
distribution in the undeformed state, as described in [15].

The network architecture is shown in Figure 5, and was
based on feature extraction through convolutional layers and
residual blocks. The residual blocks are a type of building
block that allowed the network to learn deeper representations
by retaining information learned in early layers. These were



then followed by a fully connected layer with its outputs
processed through a softmax function that returned normalized
class probabilities. The dataset was divided into four equal
parts, each containing data corresponding to each of the four
recordings (and balanced across the four classes). Therefore,
4-fold leave-one-recording-out cross validation was employed
to evaluate the performance of the network. The network was
then evaluated based on the average test accuracy, as reported
in section III. During each run, the network was trained for 50
epochs by minimizing the log-likelihood loss with the Adam
optimizer [19], using a batch size of 128 samples. A learning
rate of 5e−5 and weight decay of 1e−5 were employed.

III. RESULTS AND DISCUSSION

A. Sensor Characterization

The pixel intensity differences between the deformed and
undeformed states for one weight are shown in Figure 7.
Despite the reduced particle visibility in the reinforced setup,
the stiffer structure resulted in a greater distance between the
image center and the region with the highest change, allowing
for better class separability across all weights. Furthermore,
from Figure 8, we intuitively ascertain the high sensitivity
of the sensor: For all sensor configurations, we observed a
nonzero distance between the image center and the region with
the highest change. This shows how the sensor could register
even the lowest test weight of only 258 g placed on top of
a conventional mattress. Moreover, the sensitivity increased
after the reinforcement as the overall increased stiffness led to
a greater particle displacement inside the soft silicone.

(a) 5000 g, without reinforcement (b) 5000 g, with reinforcement

Fig. 7: Intensity difference between the deformed and undeformed state for
both configurations, with black denoting the pixels with the highest difference.
The pink circle indicates the region of highest change, computed using pixel
coordinate averaging for all pixels that passed the Otsu threshold [18].

B. Classifier Performance

We report an overall classification accuracy of 91.2% after
4-fold cross validation (Figure 9). Note that data about each
of the classes were collected at different overlapping locations
across the mattress, which increases the difficulty of the task
(e.g., the dataset included examples of the person lying in
lateral right and lateral left in the same mattress regions).
The tendency of the network to overclassify the prone label
may be explained by a reduced class separability with the
supine position, which could be improved by controlling the
filtering effect of a dedicated mattress. The network inference
takes about 1ms on the single-core of a standard laptop CPU,
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change (pink points in Figure 7) for both cases: weight on top of the mattress
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nonzero, indicating that the sensor detected the weight changes.
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Fig. 9: Confusion matrix of the neural network as described in II-D. Overall
classification accuracy was at 91.2%.

fitting within the camera acquisition frame rate (30 fps). For
closed-loop sleep position control, a much lower frequency is
likely to be sufficient. However, the fast inference may still be
beneficial for improving robustness to image noise by time-
averaging over subsequent images.

IV. CONCLUSION

This work showed how to leverage advances in artificial
tactile sensing technology to provide a novel solution for
unobtrusive sleep position classification. The sensor prototype
described in the paper is of particular interest in sleep robotic
applications as it is fully hidden from the user, easily scalable,
and highly sensitive, providing very useful information for
accurate sleep position classification. Future work includes a
more rigorous sensor characterization, the collection of data
from multiple participants with different weight, and using the
sensor for vital sign estimation and surface contact pressure
estimation.
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