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Abstract— Medication optimization is a common component
of the treatment strategy in patients with Parkinson’s disease.
As the disease progresses, it is essential to compensate for
the movement deterioration in patients. Conventionally,
examining motor deterioration and prescribing medication
requires the patient’s onsite presence in hospitals or practices.
Home-monitoring technologies can remotely deliver essential
information to physicians and help them devise a treatment
decision according to the patient’s need. Additionally, they
help to observe the patient’s response to these changes. In
this regard, we conducted a longitudinal study to collect gait
data of patients with Parkinson’s disease while they received
medication changes. Using logistic regression classifier, we could
detect the annotated motor deterioration during medication
optimization with an accuracy of 92%. Moreover, an in-depth
examination of the best features illustrated a decline in gait
speed and swing phase duration in the deterioration phases
due to suboptimal medication.

Clinical relevance— Our proposed gait analysis method in
this study provides objective, detailed, and punctual informa-
tion to physicians. Revealing clinically relevant time points
related to the patient’s need for medical adaption alleviates
therapy optimization for physicians and reduces the duration
of suboptimal treatment for patients. As the home-monitoring
system acts remotely, embedding it in the medical care pathways
could improve patients’ quality of life.

I. INTRODUCTION

Parkinson’s disease (PD) emerges with motor symptoms
influencing the patient’s gait with short strides and shuffling
patterns [1]. The severity of the symptoms increases with
the disease progression as the dopaminergic nigrostriatal
pathways degenerate over time [2]. The disease advancement
aggravates the gait of PD patients, increasing instability in
mobility and the risk of falls [3].

Dopaminergic therapy is the dominant source of treatment
to reduce the effects of motor symptoms by addressing the
reduction of dopamine levels in PD patients [4]. However,

*This work was supported by the Bavarian Ministry for Economy,
Regional Development and Energy via the project DiGaitAppPD - Digital
gait analysis as a health application for therapy monitoring in Parkinson’s
patients (grand No. LSM-1910-0011/0012/0013/0014)

1Machine Learning and Data Analytics Laboratory (MaD Lab), De-
partment of Artificial Intelligence in Biomedical Engineering, Friedrich
Alexander University Erlangen Nuremberg, Erlangen-Nuremberg, Germany

2Portabiles HealthCare Technologies GmbH, Erlangen, Germany
3Department of Molecular-Neurology University Hospital Erlangen, Er-

langen, Germany
4Medical Valley Digital Health Application Center, Bamberg, Germany
5NeuroSys GmbH, Ulm, Germany
6University of Luxembourg, Luxembourg Institute of Health, Centre

Hospitalier du Luxembourg
hamid.moradi@fau.de

chronic Dopaminergic therapy will result in symptom fluctu-
ations and a shorter response to medication in the later stages
of the disease [5, 6]. Furthermore, a high dosage of dopamine
in the brain leads to an overactivation of the receptors in the
striatum and the emergence of dyskinesia over time [7].

Thus, identifying the precise amount of medication that
retains the patient in the symptom-free zone and avoids
potential side effects is crucial and requires long-term and
integrative considerations [8, 9]. Moreover, the subjectivity
and short duration of the visiting time add to the complexity
of drug management [10].

Home-monitoring systems using wearables and particu-
larly inertial measurement units (IMUs) provide an objec-
tive solution with the ability of long-term observations, in
contrast to the conventional methods [3].

Previous studies have investigated the differences in the
spatiotemporal gait parameters among various disease stages
[3] or degrees of motor impairment such as wearing-off
episodes [11]. However, to our knowledge, monitoring pa-
tients’ responses to medication change have yet to be inves-
tigated thoroughly.

This research examines the potential of foot-worn IMUs
in monitoring the gait of PD patients while experiencing
medication changes during their therapy. We contribute to
improving home-monitoring systems by observing the pa-
tient’s response to these changes and delivering detailed gait
characteristics to clinicians for a more informed decision on
managing prescriptions.

II. METHOD

A. Data Acquisition

The dataset used in this study consists of the longitudinal
gait data of nine PD patients during a minimum period of
sixty days. It was acquired during the “Digital Gait Care”
study registered at the U.S. National Library of Medicine
(ID: NCT04931303) as part of the DiGaitAppPD (digital gait
analysis as a health application for therapy monitoring in
Parkinson’s patients) project.

The selection criteria were: patients older than 18, di-
agnosed with an idiopathic PD syndrome with a disease
severity between one to four according to Hoehn and Yahr
(H&Y) scale, able to perform the four times ten meter
(4x10m) test without rest and assistance, and able to read
and comprehend the instructions for using the IMUs at home.
The local ethics committee (Friedrich-Alexander-University
Erlangen-Nuremberg, Germany) approved the study with ref-
erence number 131 21 B. All patients gave written, informed
consent before the data collection.
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Initially, patients visited the Movement Disorders Out-
patient Clinic of the Department of Molecular Neurology
at the University Hospital Erlangen. During their visit, we
recorded the score of the Unified Parkinson’s Disease Rating
Scale, part III (UPDRS-III) [12] and gait parameters of the
4x10m test using two IMUs attached to their shoe insteps.
We provided the patients with two IMUs to attach at the
same positions while performing a similar test at home.
They recorded the data using a mobile application designed
by Systemhaus Ulm GmbH, Senden, Germany. For further
gait-related analysis, the data were transferred to Portabiles
HealthCare Technologies GmbH, Erlangen, Germany.

The patients performed the tests daily for a week after
their first visit to the hospital. Subsequently, they conducted
the tests weekly if they remained on the same medication
and experienced no deterioration or side effects (figure 1).
Upon receiving a change in their medication, they executed
the walk tests three times a day until they acquired the best
medication plan and had no deterioration (medication change
in figure 1a).

Among nine patients in this study, five experienced an
increase in the dopamine dosage due to bradykinesia (group
1, table I), and four had no change in their medication plan
(group 2, table I).

TABLE I: Patients demographics in two groups of changed
medication and unchanged medication

Med Increase (group 1) No Change (group 2)
count 4 male/ 1 female 4 male
Age 57 ± 5.72 69.75 ± 3.77

Disease Duration 2±0 9.5 ± 9.74
Height 172.8±8.40 176±7.78

B. Parameter Calculation
From the unsupervised recorded walk tests, we calculated

a list of gait parameters consisting of stride length (cm),
stride length (norm), stride time (s), gait speed (m/s), swing
percentage (%), stance time (s), maximum of foot clearance
(cm), heel strike angle (deg), toe off angle (deg). Since the
main focus of this study is to observe the longitudinal data
during the therapy, we computed the mean, standard devi-
ation, coefficient variable, maximum, and minimum of the
nine gait parameters mentioned above per day. Therefore, the
feature map of each walking test consisted of 45 statistical
gait-related parameters.

Every day with at least one performed walk test represents
a data point during the therapy, with the gait parameters as
the features of those data points. To also have a comparable
stride length parameter, we computed the norm stride length
by dividing the stride length by the height of the patients.
Moreover, the swing percentage defines the duration of the
swing phase to the relative stride duration.

C. Labeling
We labeled the data points according to the patient’s status.

The period in which patients have excessive bradykinesia,

(a) Patient with medication adjustment

(b) Patient with sustained medication

Fig. 1: The longitudinally recorded data of two patients.
The gait data were recorded daily during the baseline and
weekly in the best medication mode. The data were averaged
over the three times daily recordings during the medication
adjustment.

more than usual, and were under medication adjustment,
took the “Deteriorated” gait label. The “Normal” label was
assigned to the data points after the medication adjustment
completion and during the patient’s optimal state (figure 1a).
We repeated this procedure for the five patients who received
medication adjustments due to bradykinesia (group 1 in table
I).

As the patients in group 2 (table I) did not experience any
changes in their plan, they received the “Normal” label for
all data points (figure 1b).

D. Classification

To assess the dissimilarities between the two labels, we
approached the problem in two sections by developing dif-
ferent classifiers.

1) Group-1 Model: Initially, we focused on the five
patients in group 1 (table I) who had a medication change.
We scaled the data points of each patient individually. The
patient-specific scaling represents the highest and lowest
amount of every feature according to the individual char-
acteristics of the patients. It also makes the data of different
patients comparable. Due to the lack of “Normal” data points
in one patient, we eliminated that patient from the further
steps of this part of the method.

We appointed logistic regression for classification and
determined the impactful features combined with the optimal
hyper-parameters by looping through the K-best features
and performing a grid search cross-validation. To measure



the classifier’s performance, we applied leave-one-out cross-
validation over the four patients. We also compared the mean
and standard deviation of the obtained scores according to
the number of features.

2) General Model: Additionally, we investigated the dis-
tinctions between the two designated labels among all pa-
tients (groups 1 and 2 together). In this approach, we scaled
each feature independently over all data points since patients
in group 2 did not have a deterioration phase. We then split
the data into 20% for testing and 80% for training. Similar to
the previous section, we selected a logistic regression model
with tuned hyper-parameters using the cross-validation grid
search technique. The recursive feature elimination (RFE)
delivered the effective parameters separating the two groups.

III. RESULTS
A. Group-1 model

Based on our method, the mean of the scores over all
four patients with the lowest standard deviation represents the
best-tuned hyperparameters accompanied by the number of
features selected. Our analysis illustrates that the model per-
forms best using only the following five features: mean swing
percentage, mean of maximum foot clearance, maximum
gait speed, minimum stride time, and minimum stance time.
Moreover, The increase in the number of features results in
a decrease in the mean scores and a rise in the standard
deviations (figure 2).

Further investigation of the high-weighted features shows
significant differences in the gait parameters (figure 3a).
The gait speed, foot clearance, and swing time significantly
decline as the minimum stride time and stance time signifi-
cantly increase.

Fig. 2: The scores of the group 1 model with different
numbers of features.

B. General model

TABLE II: Metrics of the general model (groups 1 and 2)

Mean Precision Mean Recall Mean F1-score
Macro Average 94 % 90% 92%

Weighted Average 93% 92% 92%
Mean Accuracy: 92%

We acquired a mean accuracy of 92% in the general
model (table II). The RFE identified the mean gait speed,

mean swing percentage, and CV stride length as the three
most impactful features in the general model. Comparing
the two labels illustrates a significant decrease in gait speed
and swing percentage. Furthermore, a significant increase is
visible in the CV of the stride length in the deterioration
episodes (figure 3b).

IV. DISCUSSION AND CONCLUSION
Medication optimization in PD patients is a crucial matter,

and the well-being of the patients is highly dependent on
it during the treatment. We investigated the capabilities
and potentials of home-monitoring systems to observe PD
patients’ responses during the optimization process. We
examined the prime gait differences between the motor-
related deterioration periods due to medication change and
the best treatment condition. The analysis was executed ini-
tially by solely including patients who underwent medication
adjustment. Later, we compared patients who had medication
optimization with those who remained on the same treatment
throughout the study.

In our investigations, we obtained an accuracy of 72% in
classifying deterioration gait sequences from the normal gait
among those with a treatment alteration (group 1 table I).
While testing the model on individual patients, We observed
changes in the outcome of the classifier based on the number
and set of features. This shows that the changes in most
gait parameters are specific to each individual. Personalized
models might provide more detailed and explicit informa-
tion, which requires further investigation. Nonetheless, the
five most influential parameters show a clear change trend
(figures 2 & 3a).

Patients prominently have a lower foot clearance, less gait
speed, and less swing phase duration in the deterioration
periods compared to their best treatment periods. The differ-
ences show a vivid decline in the gait quality within group 1
patients. During the deterioration phase, the gait gets slower
with more foot-dragging and shuffling patterns, similar to the
results of the related studies [3, 11, 13].

Our general model over the entire dataset could identify
the deteriorated gait data with an accuracy of 92%. The
high score exhibits a clear contrast between the two labeled
events. The following two-fold reasoning can explain the
higher score of the general model compared to the group
1 model.

1) Higher number of training data points in the general
model.

2) The decline in gait quality appears over time, which
prevents a clear labeling line between the two phases.

Although longitudinal data represents a decline in gait pa-
rameters, the deterioration appears seamlessly in the data.
Considering lengthier periods of stability may be a solution
to this issue which needs further analysis.

The parameter analysis shows that PD patients have a
slower gait cadence during the medication adjustment phase,
similar to the earlier result. The lower gait speed and
swing time during these periods can be representative of
patients’ compensation for the gait aggravation by taking



(a) Important features in group-1 model (b) Important features in general model

Fig. 3: Significant differences between the deteriorated and normal gait parameters using paired t-tests with: *: p <= 5.00e-
02, **: p <= 1.00e-02, ***: p <= 1.00e-03.

shorter strides. Moreover, the stride length parameter has
a significantly higher variation during a bout and is less
consistent while patients are under medication optimization
(figure 3b).

The obtained results in this study depict the potential of
the introduced methods in the home-monitoring paradigm in
deriving meaningful information about the disease state and
well-being of patients with PD. This information would assist
physicians in decision-making about modifying the medica-
tion, alongside the patient’s response to those alterations.
The longitudinal gait data provides in-depth information
on the patient’s deviation from their prime state of the
medication. Furthermore, the proposed system in this study
can serve as a detective model in identifying responder and
non-responder patients to an altered treatment. A Predictive
model in identifying responders and non-responders would
considerably impact the home-monitoring systems, which
requires further experimentation.
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