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Feature Learning Networks for Floor Sensor-based Gait Recognition
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Abstract—Deep learning (DL) has become a powerful tool
in many image classification applications but often requires
large training sets to achieve high accuracy. For applications
where the available data are limited, this can become a severely
limiting factor in model performance. To address this limitation,
feature learning network approaches that integrate traditional
feature extraction methods with DL frameworks have been pro-
posed. In this study, the performances of traditional methods:
discrete wavelet transform (DWT), discrete cosine transform
(DCT), independent component analysis (ICA), and principal
component analysis (PCA); and their corresponding feature
networks based on a convolutional neural network (CNN)
framework: ScatNet (wavelet scattering network), DCTNet,
ICANet, and PCANet, were investigated for use in pressure-
based footstep recognition when the limited sample size is
available for person authentication. The results show that the
feature learning networks (90.6% accuracy) achieved signifi-
cantly better performance on average than the conventional
feature extraction methods (79.7% accuracy) (p < 0.05). Among
the different feature networks, PCANet provided the best
verification performance, with an accuracy of 92.2%. Feature
learning networks are simple and effective approaches that can
be a promising solution for applications like floor-based gait
recognition in a security access scenario (such as workspace
environment and border control) when small amounts of data
are available for training models to differentiate between a
larger group of users.

I. INTRODUCTION

Floor sensor-based gait recognition (or footstep recogni-
tion) employs sensors to measure pressure patterns (distribu-
tion and amplitude) of a person’s feet during walking. The
collected data are normally processed through different fea-
ture extraction methods that employ either machine learning
(ML) or deep learning (DL) algorithms. These features are
used to identify the unique characteristics of walking patterns
(or “gait signature”) for each person. The success of gait
recognition is thus dependent on the selection of features
that best represent foot pressure patterns.

The convolutional neural network (CNN/ConvNet) has
become one of the most popular DL algorithms due to its
strong classification performance across a range of tasks.
Several CNN variations have been developed to analyze gait
data and identify gait characteristics in biometric authenti-
cation systems based on underfoot pressure [1], [2]. In a
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study by Costilla-Reyes et al. [1], however, performance
was found to degrade substantially (i.e., the equal error rate
(EER) increased from 2.1% to 10.7%) when the number of
training samples (stride footsteps) per user was reduced from
500 to 40 (excluding additional validation samples). Even
with the largest training data size, comparable results were
found between the deep residual neural network (ResNet)
and conventional ML methods like a support vector machine
(SVM) (EER of 2.1% vs. 2.6%). This may be partly due
to there being insufficient training data for CNNs. [1].
Importantly, the collection of even 500 stride footsteps per
user may not be feasible for real-world scenarios (e.g., access
control at the airports or in workplace environments).

To improve the performance of recognition systems when
the training sample size is limited, feature learning net-
works have been proposed that integrate traditional feature
extraction methods within the CNN framework [3]-[6]. By
leveraging more structured approaches, these feature learning
networks have less parameters to optimize, and may thus
require less training samples. Surprisingly, these lightweight
networks have achieved state-of-the-art results and even
yielded better performance than carefully learned networks
for many classification tasks.

Some widely-known feature learning networks include
wavelet scattering networks (ScatNet) [3], discrete cosine
transform (DCT) network (DCTNet) [4], independent com-
ponent analysis (ICA) network (ICANet) [5], and principal
component analysis (PCA) network (PCANet) [6]. The first
two networks: ScatNet and DCTNet are learning-free (data-
independent) approaches as the convolutional filters are
prefixed. ICANet and PCANet are feature learning-based
approaches wherein ICA and PCA are used, respectively, to
create a data-informed convolution filter bank in each stage.
Given the potential of feature extraction methods like the dis-
crete wavelet transform (DWT), ICA, and PCA having been
demonstrated for person authentication in previous studies
[7], [8], feature network approaches that leverage the benefits
of cascaded feature learning and extraction architectures [6]
should be able to generate better discriminative features from
foot pressure images. To the best of our knowledge, an
investigation of these feature networks for floor-based gait
recognition has not previously been reported.

In this study, two aims are explored: (1) to evaluate the
performance of feature extraction methods (DWT, DCT, ICA,
and PCA) and feature learning networks based on the CNN
framework (ScatNet, DCTNet, ICANet, and PCANet) for
person verification using foot pressure-based gait; and (2)
to investigate further the effectiveness of feature learning
networks with a limited sample size. The ultimate goal of
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Fig. 1: Samples of the 2D pre-feature peak pressure images
(blue-to-yellow: low-to-high pressure levels/values (N/cm?))
with a width and height of 40 and 60 pixels, respectively.

the present study is to determine a potential DL framework
for floor sensor-based gait recognition in a security access
scenario, i.e., when a small amount of data is available per
user for model training for a larger group of users.

II. METHODS

A. Foot Pressure Data and Pre-feature Images

The performance of person verification models using dif-
ferent feature extraction approaches was investigated using
the CASIA-D dataset [9]. These foot pressure data were
recorded using the RSScan Footscan device with 255-by-64
sensors. Each footstep sample is a three-dimensional (3D)
matrix consisting of 100 two-dimensional (2D) matrices of
a foot pressure map. Each 60 x 40 x 100 footstep sample
was converted to a 60 x 40 pre-feature image by computing
peak or maximum pressure from each pixel time series [10]
(Fig. 1). Ten trials of barefoot walking were collected for
each subject, with three footsteps per trial. For a total of
97 subjects, there are 2,658 2D pre-feature images (the left
footsteps were flipped to make them more similar to the right
footsteps) for use in the next operation.

B. Feature Learning Networks

Convolutional neural network (CNN) is a network ar-
chitecture for DL that consists of three types of layers:
convolutional layers, pooling layers, and fully-connected
layers. Comparing the CNN architecture to the common
framework of pattern recognition systems, feature extraction
is performed using the convolutional layers. Dimensionality
reduction is achieved via pooling layers which are imple-
mented to reduce the dimensions of the learned feature set
(or feature maps). A fully connected layer then maps the
extracted features to the final output, i.e., classification.

The first, and maybe the most important, building block
of the CNN architecture is the convolutional layers which
consist of a set of kernels (or filters). In traditional CNNs, the
parameters of these kernels are carefully learned throughout
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Fig. 2: Comparison of CNN and feature learning network
frameworks.

the training using, for instance, back-propagation and gradi-
ent descent. Because CNNs must learn millions of parame-
ters, properly learning kernel parameters can be difficult for
small datasets. Feature learning networks, on the contrary,
replace the deep learned kernels in the convolutional layers
with conventional feature extraction methods (Fig. 2). These
methods can use either pre-fixed (learning-free) filters like
wavelet transform for ScatNet [3] and 2D DCT for DCTNet
[4] or the data-informed (learning-based) filters like ICA and
PCA for ICANet [5] and PCANet [6].

These conventional methods can each extract different
characteristics of the foot pressure patterns. Specifically,
DWT and DCT are well-known and commonly used for
image compression. DWT decomposes data in terms of
functions that are localized both in time and frequency,
whereas DCT converts data into sets of spatial frequencies.
One-dimensional (1D) DWT and 2D DCT were used as
implemented in the corresponding feature networks. The
Haar wavelet function with a decomposition level of 2 was
chosen for 1D DWT, and the 2D DCT was computed by
applying 1D DCT for each of the individual rows of the 2D
image and then for each column of the image. On the other
hand, ICA and PCA are well-known and widely used for
dimensionality reduction. While both are linear transforma-
tion and unsupervised learning techniques, ICA decomposes
data into distinct non-Gaussian (independent) components by
optimizing higher-order statistics, and PCA decomposes data
into uncorrelated components by optimizing the covariance
matrix of the data (second-order statistics).

Besides the kernels/filters, there are two other key com-
ponents of the convolution layers: hyperparameters and
nonlinear operations. The hyperparameters are commonly
set before the training process begins (e.g. the size and
number of kernels, padding, and stride), and were optimized
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Fig. 3: Visualization of different convolution kernels.
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(a) ScatNet convolution layer

(e) ScatNet nonlinearity layer

(f) DCTNet nonlinearity layer

Fig. 4: Visualization of features extracted from (a-d)

empirically in this study. For nonlinear operation, the outputs
of convolution are passed through a nonlinear activation
function (e.g. a rectified linear unit (ReLU)) for each layer in
the case of CNNs. For feature learning networks, however,
each convolutional layer often includes only the convolution
operation. Then the nonlinear activation functions are at-
tached after the last convolution layer to reduce the complex-
ity of the architecture. DCTNet, ICANet, and PCANet [4]-
[6] use binary hashing methods for nonlinear operation while
some methods, such as ScatNet [3], introduce nonlinearity
through the feature learning process.

The second building block, the pooling layer, is used to
extract the final features for feature learning networks. Scat-
Net [3] utilizes the common pooling method, i.e., average
pooling, whereas the histogram is used for PCANet, ICANet,
and DCTNet [4]-[6] (Fig. 2). Unlike the traditional pooling
layer, the histogram approach not only reduces the in-plane
dimensionality but also provides a nonlinear mapping of the
features, leading to increased robustness to small shifts and
distortions in the data.

The output of the final convolutional or pooling layer is
typically flattened, i.e., transformed into a 1D feature vector.
Instead of using the fully-connected layers to transform the
1D array of feature maps into a compact representation suit-
able for the final decision-making process, the transformed

Ill=ll EE

g
'

(d) PCANet convolution layer

(g) ICANet nonlinearity layer (h) PCANet nonlinearity layer

convolutional layers as well as (e-h) nonlinearity layers.

features from the pooling layer are used as the input to
conventional ML classifiers. In this study, a linear SVM
classifier was employed.

C. Person Verification Models

Biometric systems can work in two modes: verification
and identification. The verification mode, i.e., verifying the
identity of a claimed user by comparing the enrolled sample
with the stored one (1:1), was used to evaluate the perfor-
mance of feature learning networks in the current study. For
each user model, subject labels were binarized to 1 and
0, which indicate the target user and other users (known
imposters), respectively. On average, 30 footstep samples
were provided for each target user and 2,628 for the other
class (the same number of footstep samples were randomly
selected for each model to represent imposters). The hold-
out (train/test split) method, a more robust algorithm per-
formance estimate when the sample size is small [11], was
used: 80% for the training set and 20% for the test set.
Biometric performance was measured using the balanced
accuracy (BACC), which is the arithmetic mean of sensitivity
and specificity, and equivalent to the half total error rate
(HTER): 1 - BACC/100. Statistical analysis was conducted
using a t-test to compare the BACC results between the two
groups. A p-value of less than 0.05 was deemed a significant
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difference between the two groups.

III. RESULTS

Examples of the calculated filter banks derived from each
feature learning method and their corresponding outputs
from the convolution and nonlinearity operations are shown
respectively in Fig. 3 and Fig. 4. On average, a BACC of
90.62% was found for the four feature learning network
approaches, and the BACC of 79.69% was found for the four
conventional ML counterparts (Fig. 5). Among four feature
learning networks, PCANet yielded the highest accuracy
(92.17%), followed by ICANet (91.83%), ScatNet (88.72%),
and DCTNet (82.81%) (Fig. 6).

IV. DISCUSSION

The first purpose of this study was to evaluate the per-
formance of conventional feature extraction methods (DWT,
DCT, ICA, and PCA) and their corresponding feature learn-
ing networks based on the CNN framework (ScatNet, DCT-
Net, ICANet, and PCANet) for person verification using
foot pressure-based data during gait. The results showed

that, on average, the feature learning networks (90.6% ac-
curacy) achieved significantly better performance than the
conventional feature extraction methods (79.7% accuracy)
(p < 0.05) (Fig. 5).

When each pair of conventional and deep methods was
considered separately, DCTNet is the only feature learning
network approach that did not provide an improvement
over its counterpart (DCT). Interestingly, the comparison
of results with 2D DCT was not provided in the original
DCTNet research study [4]. In that study [4], however,
DCTNet was found to perform poorly when the input image
does not follow the assumption of high local correlation
(such as in texture images). Unfortunately, for foot pressure
images, fine details are one of the most important pieces of
information for classification (Fig. 1). With the exception of
DCT, however, the performance of other traditional feature
extraction methods (DWT, ICA, and PCA) was improved
significantly using the CNN framework (Fig. 5). It should
be noted that these conventional methods have shown the
potential for person authentication using pressure footsteps in
previous studies [7], [8]. Future works should thus consider
investigating other successful conventional feature extraction
methods such as convolution filter banks for floor-based gait
recognition. For instance, locally linear embedding (LLE)
was previously shown to outperform three other dimensional-
ity reduction techniques (kernel PCA, Laplacian eigenmaps,
and normalized spectral clustering with symmetric Lapla-
cian) for foot pressure-based identification of 104 subjects
[10].

Among the four feature learning networks in the present
investigation, PCANet provided the best verification perfor-
mance, with a balanced accuracy of 92.2% (Fig. 6). PCANet
[6] should therefore be considered as a simple but highly
competitive baseline for floor-based gait recognition when a
small amount of data is made available for model training.

As PCANet was originally proposed to be a very simple
DL network, it lacks several key components compared to
normal CNNs, such as a nonlinearity between two succes-
sive convolutional layers and the histogram for a pooling
method. Several variations of the two-layer PCANet have
been proposed in the past years, such as PCANet+ (i.e.,
utilizing mean pooling between two adjacent convolution
layers for nonlinearity and expanding the network depths
more than 2) [12] and PCANet-II (i.e., utilizing second
order statistical pooling methods) [13]. The performance of
different PCANet alternatives should be further investigated.
Based on the preliminary results of our ongoing research
work, PCANet+ yielded an additional improvement in the
person verification by 2% over PCANet (using the same
dataset and pre-feature images as the current investigation).
Moreover, as many feature learning networks are inspired
and developed based on the PCANet architecture (i.e., using
binary hashing for nonlinearity and histogram for pooling),
the effectiveness and robustness of previously proposed fea-
ture learning networks may also be improved by applying
state-of-the-art nonlinearity, and pooling methods for deep
CNNs [14].



In the current study, the two feature learning-based ap-
proaches (PCANet and ICANet) had better recognition per-
formance than the two approaches based on learning-free
(ScatNet and DCTNet) (p < 0.05) (Fig. 6). The learning-
based methods achieved 100% accuracy for 43 individual
subject models while there are only three individual models
that the learning-free methods yielded 100% accuracy. Based
on this finding, future works may consider other state-of-
the-art methods that can automatically learn and extract
features from the data, such as UMAP (uniform manifold
approximation and projection) [15], or even a fusion of the
learning-based and learning-free approaches [16]. Moreover,
as the present list of feature learning network approaches
is incomplete, future works may consider other potential
methods such as self-organizing map network (SOMNet)
[17], local manifold discriminant analysis projection network
(LMDAPNet) [18], and randomized nonlinear PCANet (RN-
PCANet) [19].

The second purpose of this study was to further investigate
the effectiveness of feature learning networks with a limited
sample size. In this study, 80% of approximately 30 footsteps
per user were used to train the verification models. This
is used to simulate applications (such as gate access for
secure buildings or border control at airports) where quick
enrollment sessions may only permit a collection of several
strides (i.e., walking for a few tens of seconds). In this
study, feature learning network approaches that leveraged
the architecture of CNNs in DL showed better performance
than traditional ML frameworks for footstep recognition with
a limited training sample size (=~ 24 footsteps per user).
Conversely, in the study of Costilla-Reyes et al. [1], when
the number of available footsteps was around 40 per user
(= 1.6x the number of training samples in this work), tra-
ditional ML algorithms outperformed (or were comparable)
to end-to-end deep ResNet using the same feature inputs.
With this context, this suggests that the feature learning ap-
proaches described here were better able to capture relevant
discriminative information than their end-to-end network
counterparts, despite having less training data. Nevertheless,
a future comprehensive comparison of conventional, feature
learning network, and end-to-end approaches in the context
of data needs is warranted.

Although the 92.2% verification accuracy obtained by the
feature learning networks is encouraging, and the number of
subjects employed (n = 97) is similar to previous studies,
it is worth noting that some applications may necessitate
the verification of several hundreds/thousands of individuals
or more. Thus, the development of new large population
datasets using floor sensors is needed, with which the per-
formance of such feature learning networks could be re-
examined.

In conclusion, these findings suggest that feature learning
networks are a simple and effective solution for floor sensor-
based gait recognition for use in security access scenarios
when only a small amount of training data are made available
during user enrollment. Feature learning networks may be
considered for other pattern recognition problems when

only a small number of training samples per observation is
available.
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