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Abstract— Insomnia is defined subjectively by the presence
and frequency of specific clinical symptoms and an association
with distress. Although sleep study data has shown some
weak associations, no objective test can currently be used
to predict insomnia. The purpose of this study was to use
previously reported and relatively crafted insomnia-related
polysomnographic variables in machine learning models to
classify groups with and without insomnia. Demographics,
diagnosed depression, Epworth Sleepiness Scale (ESS), and
features derived from electroencephalography (EEG), arousals,
and sleep stages from 3,407 sleep clinic patients (2,617 without
insomnia and 790 insomnia patients based on responses to a
set of questions) were included in this analysis. The number of
features were reduced using pair-wise correlation and recursive
feature elimination. Predictive value of three machine learning
models (logistic regression, neural network, and support vector
machine) was investigated, and the best performance was
achieved with logistic regression, yielding a balanced accuracy
of 71%. The most important features in predicting insomnia
were depression, age, sex, duration of longest arousal, ESS
score, and EEG power in theta and sigma bands across all
sleep stages. Results indicate potential of machine learning-
based screening for insomnia using clinical variables and EEG.

I. INTRODUCTION

Insomnia is defined as having difficulties initiating or
maintaining sleep, despite adequate opportunity for sleep,
and is associated with daytime consequences [1]. According
to the International Classification of Sleep Disorders (ICSD),
insomnia is classified as chronic when it occurs at least
three times a week for at least three months [2]. 5-10% of
the population suffer from chronic insomnia, which imposes
considerable economic burdens on society [3]. Chronic in-
somnia is associated with increased age, being female, and
having comorbid psychiatric disorders, notably anxiety and
depression [4]. Insomnia patients have impaired functioning
and increased risk of depression, cardiovascular diseases, and
hypertension [5], [6]. There is no well-established objective
test to diagnose insomnia. The diagnostic approach typically
involves clinical and subjective measures including: 1) a
physical exam to check for medical conditions that cause
insomnia, 2) sleep diaries and psychometrically validated
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questionnaires to analyze sleep schedules and disruption,
sleep habits, subjective feeling of sleep quality, and daytime
impairment [4]. Although polysomnography (PSG) is used
to evaluate efficacy of hypnotics (typically sleep efficiency,
sleep latency, wake after sleep onset, and total sleep time)
in clinical trial, PSG is not considered standard of care for
insomnia diagnosis [4]. Of note, PSG abnormalities used
for clinical trial assessment are only weakly associated with
insomnia symptoms in the general population [7].

Currently, limited research efforts have focused on identi-
fication of insomnia-related features and utilization of these
for machine learning-based prediction of insomnia. Shahin
et al. [8] extracted statistical and spectral features from
EEG and utilized a deep learning model to distinguish
between healthy subjects and insomnia patients. Zhao et
al. [9] demonstrated through a comprehensive review that
insomnia patients display different behavior in most EEG
bands during wakefulness and sleep compared to healthy
subjects. Kim [10] evaluated performance of several machine
learning models in classifying subjects with insomnia, show-
ing classification accuracies between 56-98%.

Despite impressive performance in classifying insomnia,
most studies include only a small sample of insomnia patients
(<100), limiting the statistical power and representativeness
of results. Additionally, the accuracy reported in most studies
does not consider the imbalance between the number of
insomnia patients compared to healthy subjects, which skews
performance. Taking these limitations into account, our study
evaluates a large, real world sample of treatment seeking
patients. We evaluate discriminatory features associated with
insomnia patients and subsequently utilize these to classify
insomnia patients based on a combination of self-reported
symptoms/complaints and PSG features. The purpose is
to identify insomnia based on objective features that may
increase understanding of the pathophysiology.

II. DATA DESCRIPTION

A total of 15,662 subjects were initially included in the
study; they were extracted from a larger cohort, collected
by Bioserenity between 2012-2015, in which subjects were
referred for PSG to rule out obstructive sleep apnea or
other sleep disorders. The Institution’s Ethical Review Board
approved all experimental procedures involving humans.

The dataset contained subject demographics, sleep-related
questions, and PSG data. From the sleep questionnaire, six
questions were chosen to identify insomnia as outlined in
Table I. The questions were answered by subjects considering
the past six months, fulfilling the time duration criterion for
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TABLE I
TWO SETS OF QUESTIONS FOR DEFINING INSOMNIA. THE FIRST SET IS

SLEEP-RELATED, AND THE SECOND SET IS DAYTIME-RELATED.
0: NONE, 1: SLIGHT, 2: MODERATE, 3: OFTEN, 4: SEVERE.

How much of a problem do you have: 0 1 2 3 4
1. with going to sleep at night?
2. because of waking up during the night?
3. with having restless, disturbed sleep?
1. not feeling rested no matter sleep amount?
2. with tiredness during the day?
3. with sleepiness during the day?

chronic insomnia (≥three months) [2]. Furthermore, a score
≥ 3 for a question indicated that the person experienced
the symptom at least three times a week, fulfilling the
frequency criterion for chronic insomnia [2]. The first three
questions were related to sleep complaints, and a total score
≥ 10 was required for insomnia. Additionally, the last three
questions were related to daytime complaints, and a total
score ≥ 9 was required, given that the first criterion was
fulfilled, for insomnia. The first threshold was determined to
identify subjects with the most severe form of insomnia, who
experience a combination of all sleep-related symptoms at a
moderate-to-severe level. The second set of questions were
used to exclude insomnia patients not experiencing daytime
consequences, in order to satisfy ICSD definition [2].

Fig. 1 shows the distributions for both set of questions,
which were used to determine both thresholds combined with
the fact that chronic insomnia patients should constitute 5-
10% of the dataset. To identify subjects without insomnia,
a score ≤ 2 was used as threshold based on the first three
questions only. The second set of questions was not used
because other sleep disorders, such as sleep apnea, may cause
daytime complaints with no relation to insomnia. Patients
with other sleep disorders were not excluded because the
severity of such disorders could potentially have importance
in predicting insomnia. Using these criteria, the dataset was
reduced from 15,662 to 3,407 subjects, for whom demo-
graphics are shown in Table II.

Fig. 1. Distribution of total scores based on three sleep-related questions
and three daytime-related questions. Each question is given a score between
0 (no complaint) and 4 (severe complaint). The total scores for daytime
questions is shown for subjects who have a sleep-related score ≥ 10.

TABLE II
MEAN ± STANDARD DEVIATION OF DEMOGRAPHICS FOR DATASET

CONSISTING OF SUBJECTS WITH AND WITHOUT INSOMNIA.
N: NUMBER OF SUBJECTS, F: FEMALES.

Group N Sex Age (years) BMI (kg/m2)
No insomnia 2,617 F: 45% 53.7 ± 18.5 31.6 ± 7.58

Insomnia 790 F: 62% 48.0 ± 15.0 32.6 ± 7.68
All 3,407 F: 49% 52.3 ± 19.9 31.8 ± 7.6

The Epworth Sleepiness Scale (ESS) [11] was also ob-
tained from each subject. For PSG variables, aggregated met-
rics such as total sleep time (TST), sleep onset latency (SOL),
wake after sleep onset (WASO), sleep efficiency (SE), sleep
maintenance efficiency (SME), time in bed (TIB), latency to
persistent sleep (LPS), sleep onset REM (SOREM), apnea-
hypopnea index (AHI), respiratory disturbance index (RDI),
arousal index (AI), periodic leg movement index (PLMI),
and desaturation index (DI) were available for each subject.
However, the original sleep event annotations performed by
technicians were lost at the time of processing the PSGs
for clinical reports. Thus, it was necessary to run automatic
scoring algorithms on the PSG recordings from this dataset.

III. METHODS

A. Automatic Scoring of Events

Two automatic deep learning-based scoring algorithms
were applied: sleep staging and arousal detection. For sleep
staging, the U-Sleep algorithm developed by Perslev et al.
[12] was used to score sleep stages every 30 seconds. U-
Sleep inputs electroencephalography (EEG) and electroocu-
lography (EOG) signals to a convolutional neural network
(CNN) [13] for sleep stage prediction, and it was trained
and validated on 19,924 PSGs from 21 different datasets,
obtaining an overall F1-score of 0.79. U-Sleep was chosen
over other algorithms because it performed as accurately
as the best human experts and generalized well across all
cohorts included in the study [12].

For arousal detection, the Multimodal Arousal Detector
(MAD) developed by Brink-Kjaer et al. [14] was utilized
to obtain location and duration of each arousal in a record-
ing. MAD inputs EEG, EOG, chin electromyography, and
electrocardiography signals to a CNN followed by a long
short-term memory network [13] for arousal detection, and
it was trained and validated on 3,915 PSGs from 4 different
datasets, obtaining an overall F1-score of 0.76. MAD was
chosen over other algorithms for similar reasons as for
U-Sleep, and because it predicts arousals and subsequent
awakenings for any duration, as opposed to other detectors
which detect arousals according to the American Academy of
Sleep Medicine definition (microarousal <15 s, wake epoch
>15 s, with dependence on how the signal is presented epoch
by epoch for manual scoring) [15].

B. Feature Extraction

Three categories of features (F) were included for sub-
sequent machine learning purposes: clinical information,
arousal duration features, and sleep stage features.



1) Clinical Information (20 F):

• Sex, age, BMI, diagnosed depression (4 F)
• TIB, TST, SOL, LPS, WASO, SE, SME, SOREM (8 F)
• AHI, RDI, AI, PLMI, DI, ESS score, number of snoring

episodes, lowest oxygen saturation (8 F)

2) Arousal Durations (22 F):

• Mean, standard deviation, minimum, maximum, per-
centiles (5%, 25%, 50%, 75%, 95%) (9 F)

• Percentage distribution (3-5 s, 5-15 s, 15-30 s, 30-60 s,
1-1.5 min, 1.5-2 min, 2-2.5 min, 2.5-3 min, 3-5 min,
5-10 min, 10-30 min, 30-60 min, >60 min) (13 F)

3) Sleep Stages (110 F):

• Percentage distribution (N1, N2, N3, REM) (4 F)
• Sleep Fragmentation (1 F)
• Relative power in EEG bands (delta, theta, alpha, sigma,

beta, gamma) + total absolute power in each brain area
(frontal, central, occipital) in each sleep stage (wake,
N1, N2, N3, REM) ((6+1)x3x5 = 105 F)

Sleep fragmentation was calculated by dividing the combined
number of awakenings and transitions from N3 and REM to
N1 by the total sleep duration in hours [17].

The power spectrum in a given sleep stage s, s ∈
{W, N1, N2, N3, R}, derived from a given EEG channel
c, c ∈ {F3, F4, C3, C4, O1, O2}, was calculated as follows:
first, all segments with the same s for a given c were
concatenated, yielding the signal xc,s(n), where n denotes
the sample index. Subsequently, the power spectrum Sc,s(k),
where k denotes the frequency index, was computed using
Welch’s method with a sliding Hamming window of length 4
seconds and 50% overlap [18]. Welch’s method was chosen
over theoretically more robust approaches, such as the Mul-
titaper method [19], due to significantly lower computation
time per recording. To obtain power in one of the bands
b, b ∈ {δ ,θ ,α,σ ,β ,γ}, Sc,s(k) was integrated in the defined
frequency interval using Simpson’s composite rule, yielding
Pb,c,s. Finally, relative power in a band was calculated as:

P̂b,c,s =
Pb,c,s

∑b Pb,c,s
, (1)

where the denominator represents the total power in a given
sleep stage and channel, which was also used as a feature.
The relative and total power were averaged for channels F3
and F4, C3 and C4, and O1 and O2, yielding aggregated
channels c̄, c̄ ∈ {F, C, O} with respect to spectral features.
Spectral features were computed using YASA toolbox [16].

Each extracted feature vector was normalized to the range
[0, 1] using min-max normalization, which is given by:

f =
f−min(f)

max(f)−min(f)
, (2)

where f = ( f1, f2, ..., fN) is a given feature vector containing
N examples, one for each subject in the dataset. Feature
normalization was performed to ensure faster convergence
during subsequent training of machine learning models.

C. Feature Selection

The feature extraction process generated a total of 152
features. Reducing the number of features was deemed neces-
sary for two reasons: eliminating highly correlated, redundant
features, and enhancing the interpretability of the selected
machine learning model. Initially, a correlation matrix was
generated by computing the pairwise correlation between all
features. The correlation between two feature vectors g and
h was calculated using the Pearson correlation defined as:

rgh =
∑

N
i=1(gi − ḡ)(hi − h̄)√

∑
N
i=1(gi − ḡ)2

√
∑

N
i=1(hi − h̄)2

, (3)

where ·̄ denotes the mean of a feature vector. A feature
g was removed if, for any other feature h, |rgh| > 0.9.
This approach yielded 25 features to remove. Subsequently,
recursive feature elimination (RFE) was utilized to further
reduce the number of features. RFE is a feature selection
technique, which fits a model to the data and recursively
removes features according to their importance, as deter-
mined by the fitted model, until a desired number of features
is reached. RFE was carried out using logistic regression
due to its simplicity and intuitive nature of calculating
feature importance based on its coefficients. Furthermore,
RFE was performed with 5-fold cross-validation to ensure
robust feature selection. RFE yielded 55 additional features
to remove. Thus, applying pairwise correlation and RFE
reduced 152 features to 72 features.

D. Machine Learning

Three machine learning models were implemented to eval-
uate the predictive value of each model in classifying subjects
with and without insomnia: logistic regression, neural net-
work, and support vector machine (SVM). Hyperparameter
values were chosen based on validation set performance.
All models were trained and evaluated using 5-fold cross-
validation to obtain predictions on the entire dataset.

1) Logistic Regression: Logistic regression outputs a
probability between 0 and 1 for insomnia and is given by:

f (x) =
1

1+ e−w·x , (4)

where x = (x1,x2, ..,xM) is a vector containing M features
and w = (w1,w2, ..,wM) is a vector containing their associ-
ated coefficients or weights. The weights are optimized by
minimizing the binary cross-entropy cost function:

J(w) =− 1
N

N

∑
i=1

yi · log( f (xi))+(1− yi) · log(1− f (xi)), (5)

where yi is the label for the ith training example (0: no
insomnia, 1: insomnia). A L2 regularization term was added:

J(w)+
λ

2N

M

∑
j=1

w2
j , (6)

where λ is called the regularization parameter and has the
purpose of shrinking the weights to prevent overfitting. λ was
set to 0.1 to introduce a small amount of regularization, and



stochastic average gradient was used for optimization [20].
Weights were introduced for both classes in the loss function
due to imbalance between the number of insomnia patients
compared to subjects without insomnia and were given by:

wk =
N

2Nk
, (7)

where Nk is the number of examples for class k, k ∈ {0,1}.
2) Neural Network: A neural network with two layers was

implemented, given by the equation:

f (x) = σ
(2)(w(2) ·σ (1)(w(1) ·x+b(1))+b(2)), (8)

where w(l) and b(l) are the weights and bias of the lth

layer, and σ (l) are non-linear activation functions. Layer 1
consisted of 128 neurons, followed by a ReLU activation
function, batch normalization [21], and dropout (probability
of 0.1) for regularization [13]. 128 neurons proved to be the
optimal number for addressing the complexity of this level,
since incorporating additional neurons led to overfitting.
Layer 2 consisted of one neuron followed by a sigmoid
activation function to output a probability for insomnia. The
cost function was given by Eq. 5, and penalty weights were
introduced for each class in a similar manner as for logistic
regression. The network was optimized using the Adam
optimizer [22]. The learning rate was set to 1 · 10−4, batch
size was 128, and the network was trained for 100 epochs.
Early stopping was applied when the validation error did not
decrease for 10 consecutive epochs.

3) SVM: SVM creates a decision boundary using hyper-
planes in a high-dimensional space by maximizing the mar-
gin (distance between the decision boundary and the nearest
data point of each class) [23]. The output is given by:

f (x) = ∑
i∈SV

yiαiK(xi,x)+b, (9)

where SV are support vectors, which are data points that
lie within the margin, αi, 0 ≤ αi ≤ C, are called dual
coefficients, and K(xi,x j)= φ(xi)

T φ(x j) is a kernel that maps
the data into a higher-dimensional space by the function φ .
C was set to 1.15 and acts as a penalty term for samples
that are at a distance from their correct margin boundary. A
polynomial of degree 3 was used as kernel function.

E. Performance Evaluation and Feature Importance

Due to subjects without insomnia being overrepresented
compared to insomnia patients, balanced accuracy was ap-
plied as performance metric, which is given by:

Accbal =
Sensitivity+Specificity

2
=

TP
TP+FN + TN

TN+FP

2
, (10)

where TP are the true positives, FN are the false negatives,
TN are the true negatives, and FP are the false positives.
Feature importance was calculated using the Shapley Addi-
tive Explanations (SHAP) algorithm [24]. The SHAP value
for the jth feature using N data points and given a logistic
regression model (Eq. 4), is calculated as:

φ j = w jx j −w j
1
N

N

∑
i=1

x ji, (11)

where x j and w j are the features and weights, respectively.

IV. RESULTS

Table III summarizes performance for each model de-
scribed in Section III D in classifying subjects with and
without insomnia. Table IV shows the 15 most important
features in classifying insomnia patients based on SHAP
importance values calculated by Eq. 11. Table V summarizes
performance using different features for classification.

V. DISCUSSION

For all three models, balanced accuracy was ∼20% higher
than if the model predicted all subjects to not have insomnia
(balanced accuracy of 50%). Although the best three models
were presented, many more were investigated (including
random forest and XGBoost), but results for these were
intentionally left out. For further analysis of the results,
logistic regression was chosen because it displayed highest
sensitivity in detecting insomnia, and for its simple nature.

Table IV shows that in this dataset, insomnia is associated
with depression, decreased age, female sex, increased ESS
score, decreased absolute EEG power in N3, longer duration
of arousals, increased relative theta and sigma power dur-
ing N1 and N3, decreased relative theta and sigma power
during REM, decreased relative theta power during N2, and
increased relative sigma power during N2. The association
between insomnia and depression, sex, and ESS score is
well-known [4], however not with decreasing age. Table II
shows that insomnia patients have a lower mean age versus
subjects without insomnia, while the average age of the
dataset indicates that included subjects are young. Perhaps
if older subjects were included, the inverse relationship
between insomnia and age would not have been present.
The increased theta and sigma activity during NREM was
similarly reported by Zhao et al. [9], however the decreased
activity in the same bands during REM was opposite. In-
creased alpha activity during REM was also reported in [9].

Table V shows that using the top 15 features obtained by
the SHAP algorithm gives a balanced accuracy of ∼69%.
Thus, the remaining 58 features contribute only a 2% in-
crease in overall performance. Table V further highlights
importance of the relative power in theta and sigma bands
across all sleep stages, and the overall power in N3, for
distinguishing between subjects with and without insomnia.
It is also evident when using only arousal features that
although the longest arousal is most important, the remaining
arousal features still contribute a 10% increase in sensi-
tivity. When using only a single feature for classification,
depression is most important with a balanced accuracy of

TABLE III
PERFORMANCE FOR MACHINE LEARNING MODELS IN CLASSIFYING

INSOMNIA PATIENTS VS. SUBJECTS WITHOUT INSOMNIA.

Model Acc (%) Sen (%) Spec (%)
Support Vector Machine 71.3 65.1 77.5

Logistic Regression 70.9 67.5 74.3
Neural Network 70.0 64.7 75.4



TABLE IV
TOP 15 FEATURES FOR CLASSIFYING SUBJECTS WITH AND WITHOUT

INSOMNIA BASED ON SHAPLEY ADDITIVE EXPLANATIONS VALUES.

Features No insomnia Insomnia Coef p-val
Depression (0, 1) 0.15 ± 0.36 0.49 ± 0.50 1.44 10−30

Age (years) 53.7 ± 18.5 48.0 ± 15.0 -2.77 10−16

Sex (0: F, 1: M) 0.55 ± 0.50 0.38 ± 0.49 -0.58 10−9

ESS score (0-24) 9.02 ± 5.49 10.7 ± 6.05 0.93 10−6

N3 power (µV2/Hz) 48.5 ± 19.7 44.8 ± 20.7 -3.85 10−4

Longest arousal (min) 40.5 ± 30.9 48.5 ± 41.9 1.96 0.01
Theta in N3 (%) 6.74 ± 2.76 6.36 ± 3.02 2.49 0.02
Sigma in N3 (%) 1.19 ± 0.69 1.42 ± 0.93 3.66 0.06
Sigma in N1 (%) 6.34 ± 2.33 6.89 ± 2.84 2.56 0.07
Theta in N1 (%) 20.1 ± 5.96 19.2 ± 6.03 2.76 0.11
Alpha in REM (%) 7.91 ± 3.57 7.09 ± 4.02 1.74 0.12
Sigma in REM (%) 4.29 ± 2.12 4.11 ± 2.56 -1.86 0.16
Theta in REM (%) 15.9 ± 5.81 13.8 ± 6.76 -1.68 0.19
Theta in N2 (%) 13.0 ± 3.94 12.0 ± 4.24 -1.51 0.27
Sigma in N2 (%) 4.56 ± 2.03 5.41 ± 2.75 2.32 0.99

TABLE V
PERFORMANCE USING FEATURE SUBSETS TO CLASSIFY SUBJECTS WITH

AND WITHOUT INSOMNIA USING LOGISTIC REGRESSION.

Features Acc (%) Sen (%) Spec (%)
Top 15 features 68.8 64.4 73.3
Depression, age, sex, ESS 66.9 59.5 74.4
Depression 66.9 49.1 84.7
All spectral features 61.3 56.0 66.6
Theta, sigma, abs power N3 59.8 52.8 66.8
All arousal duration features 58.0 51.3 64.8
Longest arousal 54.5 41.8 67.3

∼67%. However, the sensitivity is only ∼50%, which means
that half of the insomnia patients are misclassified because
they lack a depression diagnosis. Insomnia is a common
and important symptom of depression, and it is possible
that the insomnia patients reflect primary depression instead
of primary insomnia, given the strong association. Further
adding age, sex, and ESS score to the model increases
the sensitivity by 10%, correctly classifying some insomnia
patients that are wrongly classified based on depression
alone. The benefit of these features is that no overnight PSG
is required, and the information is gathered in few minutes.

A limitation of this study is that only severe insomnia
patients and controls were chosen based on the criteria
presented in Section II, so this study is not representative of
the whole population and patients with partial phenotypes of
insomnia with e.g., only sleep initiation or sleep maintenance
problems. Furthermore, important variables with strong as-
sociation to insomnia, such as anxiety or taking medications,
were missing. In the sleep-related questionnaire, a question
was related to anxiety about falling asleep, but was left out
of the analysis, because the answer is subjective and highly
correlated with insomnia. Future work should investigate
application of deep learning on PSG signals for automatic
feature extraction, which could lead to new biomarkers.

This study demonstrates that machine learning of PSG can
identify features of insomnia and may be used as an objective
screening method. Accuracy may be increased with multiple
nights of recording with home devices, more consistent with
the definition of symptoms occurring ≥3 times per week.
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