
  

 

Abstract— In post-ACLR individuals, gait variability often 

represents the presence of altered motor control. Quantifying 

variable limb loading is challenging, yet nonlinear analyses have 

been successful in detecting changes in gait variability due to 

altered motor control. Here, nonlinear metrics were derived and 

used to train multiple machine learning models to classify between 

healthy controls and post-ACLR individuals. The metrics were 

extracted from individuals’ vertical ground reaction force data 

during a fast-walking trial as variable limb loading is exacerbated 

when the system is stressed and being challenged. It was 

hypothesized that effective differentiation between healthy control 

and post-ACLR individuals would be achieved using machine 

learning models derived from limb loading rate variability 

measures. Seventeen healthy control and fourteen post-ACLR 

participants with measured between-limb loading rate asymmetries 

completed the walking protocol. Ground reaction force data was 

collected on an instrumented treadmill where they performed 

walking trials at 1.5 m/s. Nonlinear limb loading rate measures 

extracted from the healthy controls and post-ACLR participants’ 

data served as inputs to the models in order to train them to 

distinguish between the two states. A Decision Tree Classifier that 

utilized a bagging strategy was the best model for distinguishing 

between healthy control and post-ACLR participants. The model 

was successful in classifying participants, reporting an accuracy 

score of 73%, precision score of 100%, and an AUC score of 0.77, 

despite the smaller dataset. The ability to detect and classify post-

ACLR loading rate variation has significant clinical implications, 

as these methods could be implemented in clinical settings to 

diagnose pathological limb loading dynamics and/or altered motor 

control. 

 

Clinical Relevance— This classification model can be easily 

integrated into the clinic to help diagnose pathological limb 

loading based solely on vertical ground reaction forces and can 

aid clinicians in providing data-driven metrics to help inform 

rehabilitation decisions. 

I. INTRODUCTION 

Gait variability as emerged as a strong indicator of 
pathological movement. In post anterior cruciate ligament 
reconstruction (ACLR) individuals, gait variability often 
represents altered motor control [1], [2]. Altered motor control 
is problematic as it can contribute to detrimental limb loading 
and the initiation and progression of knee osteoarthritis [3]–
[5]. Therefore, accurately characterizing loading rate 
variability is important. Research has shown that increased 
gait variability signifies a disruption of ordered movement, a 
loss in gait complexity, and an inability to adopt and store new 
movement patterns in response to changing conditions [2], [5], 
[6]. Thus, this study sought to develop a model using nonlinear 
and linear metrics that can characterize changes in gait 
variability to classify between healthy controls and post-
ACLR individuals.  

Post-ACLR individuals often suffer from impaired 
proprioception, which is a consequence of reduced motor 
control [1], [7], [8]. Therefore, increased loading rate 
variability is likely to be found in the post-ACLR population, 
however, quantifying and accurately representing this 
variability can be difficult due to their unique compensatory 
gait dynamics. For instance, it has been found that both post-
ACLR individuals’ reconstructed and non-reconstructed limbs 
produce increased limb loading during walking, suggesting 
that impaired motor control does not exclusively affect the 
reconstructed limb [8]. Thus, post-ACLR individuals’ limbs 
can be classified as overloaded or underloaded based on 
loading rate patterns found during baseline or pre-screening 
walking trials. By using this approach to identify the 
overloaded limb, it will increase the likelihood of grouping 
limbs with similar motor control and aid in investigating the 
relationship between limb loading rate variability and motor 
control.   

Quantifying gait variability is challenging due to the 
complexity of gait. Yet, nonlinear analyses are well suited for 
capturing gait complexity [6]. Poincaré analysis, approximate 
entropy, the Lyapunov exponent, and sample entropy are all 
nonlinear analyses that have demonstrated the ability to 
evaluate the underlying regularity, predictability, and 
complexity within repetitive motion [5], [6], [9]–[11]. Here the 
nonlinear based metrics will serve as inputs into the machine 
learning algorithms to create a model to classify between 
healthy and pathological limb loading during fast walking. 
This model is significant because it not only identifies 
pathological gait but will highlight how their impaired motor 
control disrupts their limb’s ability to adopt and sustain healthy 
gait mechanics when placed under greater physical demand.  

This study sought to develop a model using machine 
learning algorithms to classify healthy and pathological limb 
loading rate variability during gait in healthy controls and post-
ACLR individuals. Successful classifications would lead to 
better understanding of motor control changes in pathological 
populations and would suggest that post-ACLR individuals’ 
limbs continue to suffer from impaired motor control. It is 
hypothesized that effective differentiation between healthy 
control and post-ACLR individual’s limb loading will be 
achieved when using machine learning algorithms derived 
from nonlinear and linear variability metrics. This work will 
provide further insight into post-ACLR individuals’ motor 
control that could identify potential injury risks and long-term 
gait and joint health.  

II. METHODS 

A. Experimental Protocol 

Seventeen healthy control participants (mean ± standard 
deviation; age: 20.6 ± 2.0 years; height: 1.7 ± 0.10 m; mass: 
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74.9 ± 14.4 kg; 7 females and 10 males) and fourteen post-
ACLR participants (mean ± standard deviation; age: 21.6 ± 3.0 
years; height: 1.7 ± 0.11 m; mass: 73.3 ± 16.8 kg; time since 
reconstruction 43.5 ± 29 months; 8 females and 6 males; graft 
type: 7 hamstring, 6 patellar tendon, 1 quadricep, 1 gracilis) 
with measured between-limb loading rate asymmetries 
completed the walking protocol. Each participant provided 
written consent to participate in the study in accordance with 
the University of Connecticut institutional review board. 

The participants performed the walking protocol during a 
single session, on a Bertec split-belt instrumented treadmill 
(Bertec Corporation, Columbus, Ohio). Ground reaction force 
data was collected at 1200 Hz. An initial 5-minute warm-up 
walking trial was conducted to allow participants to become 
accustomed to the equipment. After the participants were 
acclimated to the instrumented treadmill, they each performed 
one 5-minute walking trial at 1.5 m/s. Vertical ground reaction 
forces were extracted from the overloaded limb of post-ACLR 
individuals and the right limb of the controls, and loading rates 
were then calculated for each stride. 

B. Metrics to Detect Limb Loading Rate Variability 

Considering the complexity of gait, an assortment of 
nonlinear variability metrics were used in conjunction with 
one linear metric, standard deviation. The nonlinear variability 
measures utilized were short-term and long-term variability 
metrics derived from Poincaré analysis, approximate entropy, 
the Lyapunov exponent, and sample entropy. The short- and 
long-term variability measures reflect stride-to-stride and 
overall task variability, respectively, and are calculated using 
the standard deviation of the entire data set and the standard 
deviation of the differences between data points [12]. 
Approximate entropy was used to measure the regularity and 
predictability of the data [5]. Lyapunov exponent was 
computed to quantify the underlying structure of variability 
during periodic movement [6]. Sample entropy is derived from 
approximate entropy and similarly reflects predictability and 
complexity, although it is not as influenced by length of the 
data series [11]. All metrics were calculated using a custom 
MATLAB code (MATLAB R2019a, The MathWorks, Inc., 
Natick Massachusetts, USA). 

C. Machine Learning Protocol 

The walking trials yielded 20 gait variability metrics for 
each of the 31 participants. The data was split into training and 
testing subsets, where the training subset accounted for 65% 
of the data and the testing subset accounted for 35%. This 65-
35 split was used because the dataset is small, and similar splits 
are often used for small datasets. The variability metrics in 
each of the training and testing subsets were standardized, such 
that each metric had a mean of zero and a standard deviation 
of one, before utilizing them in the classification modalities. 

The classification models utilized included a Decision Tree 
Classifier (DTC), a Support Vector Machine (SVM), a K-
Nearest Neighbors (KNN) model, and a K-Means (KM) 
model. Each algorithm was performed with a bagging strategy 
to overcome the limitation of a smaller dataset. Furthermore, 
the DTC and SVM models with bagging were chosen because 
of their ability to deliver high accuracy scores, and the KNN 
and KM were used because of their simplicity and 
computational efficiency. Each model was passed through a 

grid search that evaluated the model’s performance based on 
optimized area under the receiver operating curve (ROC). 
Lastly, a Leave-One-Out cross validation strategy was 
implemented for each of the classification models to ensure 
overfitting of the training set was not occurring. Evaluation of 
overfitting was performed by comparing the accuracy found 
on the training set to the average accuracy found at each fold 
of the cross validation and computing the standard deviation 
of the accuracy scores from the cross validation.  

The metrics used to assess each classification method’s 
performance on testing data were accuracy, precision, recall, 
and F1 scores, as well as area under the ROC (AUC). These 
evaluations were chosen as accuracy reflects overall 
performance on testing data, precision represents the 
percentage of true positive results to total positive results, 
recall reflects the percentage of predicted positive outcomes to 
the total number of actual positive outcomes, and F1 sums 
precision and recall to a more direct method of comparison. 
Furthermore, the AUC score reflects the model’s success in 
discerning between classes, which here are “healthy” and 
“ACL”. 

III. RESULTS 

The performance of each of the classification algorithms 

revealed that each model has acceptable potential to 

appropriately discern healthy controls and post-ACLR 

individuals based upon their limb loading rate variability 

metrics. Both the Decision Tree Classifier and K-Nearest 

Neighbors models had high training accuracy, but much 

lower cross validation accuracy (Table I). Based on the 

Leave-One-Out cross validation results, it is possible that 

overfitting may have been occurring.  

TABLE I. THE TRAINING AND CROSS-VALIDATION RESULTS FOR EACH 

CLASSIFICATION MODEL, ALL OF WHICH IMPLEMENTED A BAGGING 

STRATEGY. SHOWN IS THE ACCURACY FOR THE ALGORITHM TO PREDICT THE 

TRAINING DATA AND THE MEAN ACCURACY FROM THE LEAVE-ONE-OUT 

CROSS VALIDATION. 

Algorithm 
Training 

Accuracy 

Leave-One-Out Mean 

Accuracy 

Decision Tree 80% 50% 

SVM 55% 55% 

K-Nearest 

Neighbors 
90% 70% 

 

The Decision Tree Classifier (DTC) with bagging 

outperformed the other two models, reporting higher 

accuracy, precision, F1, and AUC scores compared to the 

SVM and K-Nearest Neighbors models (Table II). It recorded 

an accuracy score of nearly 73% on the testing data, as well 

as a precision score of 100%, highlighting the model’s ability 

to correctly discern post-ACLR individuals despite the 

incredibly small dataset. Furthermore, the relatively high 

AUC score of 0.77 reported for the DTC, derived from the 

ROC curve (Fig. I), represents the model’s greater ability to 

distinguish between classes. 

 



  

TABLE II. COMPARISON OF THE PERFORMANCE OF THE MACHINE 

LEARNING ALGORITHMS, ALL OF WHICH UTILIZED A BAGGING STRATEGY, IN 

CLASSIFYING BETWEEN THE HEALTHY AND ACL STATUSES. 

Algorithm Accuracy Precision Recall F1 AUC 

Decision Tree 72.7% 100% 40.0% 57.1% 0.77 

SVM 54.5% 27.2% 50.0% 35.3% 0.53 

K-Nearest 

Neighbors 
54.5% 53.6% 53.3% 53.0% 0.53 

 

 
Figure 1. The ROC curve for the Decision Tree Classifier with 

bagging, which showed the best performance on testing data. 

IV. DISCUSSION 

This study successfully implemented classification 
models to differentiate between healthy control and post-
ACLR participants using limb loading rate variability metrics. 
Consistent with the hypothesis, a model was derived that was 
effectively able to classify healthy control and post-ACLR 
individuals, despite the small number of participants. The 
findings demonstrate that post-ACLR individuals’ 
overloaded limbs exhibit significantly different limb loading 
rate variability compared to healthy controls at the 1.5 m/s 
walking speed, indicated by the models’ ability to distinguish 
between participants. This also illustrates that post-ACLR 
individuals struggle to consistently load their limbs and 
suggests that the overloaded limb likely continues to suffer 
from altered motor control uncovered at faster walking 
speeds. The ability to distinguish and discern between healthy 
control and post-ACLR participants based on limb loading 
rate variability indicates that machine learning methods could 
potentially serve as a valuable tool to identify altered motor 
control in pathological populations. 

Increased gait variability is a result of reduced motor 
control [2], [5], [6]. The altered loading rate variability found 
in post-ACLR individuals’ overloaded limbs represents 
changes in motor control and gait performance, which impact 
the limbs’ ability to adopt and maintain healthy limb loading 
dynamics. Furthermore, these differences in loading rate 
variability are likely indicative of lingering neuromuscular 
impairments that contribute to the altered motor control and 
inhibit consistent, healthy limb loading. Inconsistent limb 

loading is concerning because it leads to uneven loading 
across the knee, which contributes to the initiation of cartilage 
degeneration [7], [8], [13]. The ability to distinguish between 
healthy and pathological states using machine learning 
methods that used nonlinear variability metrics to quantify 
and detect alterations in motor control highlights the utility of 
machine learning as a gait assessment, rehabilitation, and 
diagnostic tool. 

The success of the classification model’s ability to 
differentiate between healthy control and post-ACLR 
participants emphasizes how machine learning can be used to 
contribute to post-ACLR treatment and rehabilitation. It is 
well documented that gait deficits and biomechanical 
compensation strategies can be present in post-ACLR 
individuals throughout rehabilitation. For instance, 
diminished quadriceps function, impaired rate of torque 
development, and the adoption of rigid, “cautious” gait are all 
a consequence of unresolved neuromuscular dysfunction that 
contribute to altered limb loading variability [14]–[17]. In this 
study, the average time since ACL reconstruction surgery in 
the post-ACLR individuals was approximately 4 years and the 
model detected pathological limb loading throughout the 
post-ACLR participants. This is concerning as it indicates that 
long-term post-ACLR individuals are still demonstrating 
altered gait and are at an increased risk of further injury. 

However, the integration of classification models into 
rehabilitation protocols could be beneficial as they can help 
to identify underlying motor control deficits which can aid 
clinicians in making well informed rehabilitation strategies 
and decisions. Specifically, the implementation of this 
classification algorithm into diagnostic and rehabilitative 
environments can aid clinicians in identifying subtle gait 
abnormalities or deficits, like pathological loading rate 
variability, that otherwise would remain undetected. 
Furthermore, with the rising advancement and use of 
wearable inertial measurement units (IMUs), and considering 
that few clinics have split-belt treadmills with embedded 
force plates, the algorithm could be adapted for classification 
based on ground reaction force outputs from wearable force 
sensors and IMUs. 

This study did have limitations. A limitation of this study 
is the small dataset and number of participants. With only 17 
healthy participants and 14 post-ACLR participants, 
accurately and appropriately training machine learning 
models for classification is challenging. However, with the 
high accuracy and AUC scores reported for the Decision Tree 
Classifier that applied a bagging strategy, the results are 
promising, and the addition of more subjects would aid in 
decreasing the discrepancy found between training and cross-
validation accuracies. Another limitation of the study is that 
the participants performed the walking protocol on an 
instrumented treadmill rather than overground. Considering 
the treadmill controls for gait speed, variables associated with 
gait speed could vary between walking on the treadmill and 
walking overground. However, prior research has shown that 
biomechanical metrics can be generalized to overground 
walking, and since all the participants walked on the same 
treadmill, the comparison of gait dynamics across limbs is 
also appropriate [12], [18], [19].  



  

V. CONCLUSION 

This study successfully produced a classification model 

that could differentiate and classify healthy control and post-

ACLR participants according to their gait variability during 

fast walking. The model reported an accuracy score of 73% 

and an area under the ROC curve score of 0.77, which are 

promising scores considering the smaller dataset. 

Furthermore, the model was successful in using only a 

handful of nonlinear variability metrics calculated from 

ground reaction force data alone. Thus, this model is well 

suited for clinical applications, as it can be used 

diagnostically and does not require additional data, such as 

from a motion capture system. The model’s success in 

differentiating between healthy control and post-ACLR 

participants’ limbs reveals that post-ACLR individuals are 

adopting altered motor control strategies at faster walking 

speeds. This indicates that the altered gait variability, or their 

decreased ability to maintain consistent limb loading, is 

masked during slower speeds and is exposed when the 

individual’s neuromuscular system is challenged by the 

faster walking pace. The findings of this study emphasize 

the utility of this machine learning to both classify between 

healthy and pathological gait dynamics and provide critical 

insight into the gait adaption and motor control strategies 

that post-ACLR individuals employ during fast walking. 
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