
Uncovering Emotions: A Pilot Study on Classifying Moods in the
Valence-Arousal Space using In-the-Wild Passive Data

Cristina G. Vazquez1,∗, Corinne Eicher2,3,4, Reto Huber4, Golo Kronenberg2,
Hans-Peter Landolt3 , Erich Seifritz2, and Giulia Da Poian1

Abstract— Mood classification from passive data promises to
provide an unobtrusive way to track a person’s emotions over
time. In this exploratory study, we collected phone sensor data
and physiological signals from 8 individuals, including 5 healthy
participants and 3 depressed patients, for a maximum of 35
days. Participants were asked to answer a digital questionnaire
three times daily, resulting in a total of 334 self-reported mood
state samples. Gradient-boosting classification was applied to
the collected passive data to categorize 4 mood states in the
Valence-Energetic Arousal space. The cross-validation results
showed better classification performance compared to a baseline
model, which always predicts the majority class. The classifier
using passive data had an area under the precision-recall curve
of 0.39 (SD = 0.1) while the baseline had 0.26 (SD = 0.03),
suggesting the presence of information in the collected features
that support the classification process. The model identified the
entropy of the heart rate and the average physical activity
in the preceding 8 hours, along with the max normal-to-
normal (NN) sinus beat interval and the NN low frequency-
high frequency ratio during the questionnaire completion, as
the most important features in its analysis. Additionally, the
time range of data collection was considered a contextual factor.

I. INTRODUCTION

Mood disorders, such as depression and anxiety, are
among the most prevalent and debilitating mental health
conditions worldwide [1].

Measurements of mood and emotions are widely employed
in outpatient psychological and psychiatric assessments of
mood disorders such as depression. However, it is currently
performed with self-reported symptoms during structural
clinical interviews that are infrequent and subject to observer
bias [2] and variability in accuracy for recalling past symp-
toms [3]. This leads to diagnostic challenges and difficulties
in evaluating the effectiveness of interventions. The last
decade has seen an explosion in the capability of monitoring
individuals via sensors in wearable devices and smartphones.
These devices have shown the ability to identify objective
digital biomarkers, and this capability is expected to increase
in the future.

Several studies have correlated mood and depressive
symptoms with social interaction measured from a combi-
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Fig. 1. Remote Assessment and Sleep Modulation (RASM) pilot study
protocol and data modalities. Each of the pink diamonds represents a day
in the study. The ECG patch continuously records passive data, an APP
collects passive data, and digital questionnaires are filled out 3 times daily.
A sleep device is worn during the nights on weeks 2 and 4.

nation of mobile phone sensors and apps usage [4], [5],
[6]: greater depression scores have been associated with
decreases in total communication and social contact (number
of phone calls, text messages); and several studies have
related Wi-Fi- and GPS-derived location features to depres-
sion [7], [8], [9]. The relationship between physical activity
and depression has also been well-studied. Greater levels of
accelerometer-based physical activity and energy expenditure
were strongly associated with decreased depression rates
[10]. A link between autonomous nervous system dynamics
and mood swings has been suggested based on physiological
parameters derived from cardiovascular activity [11]. There-
fore, passive data holds great potential to provide a frequent
and unobtrusive assessment of intervention outcomes.

A recent study collected passive data and self-reported
mood (valence and arousal) scores, discovering statistically
significant distinctions in GPS mobility, phone usage, sleep,
physical activity and mood between depressed and non-
depressed groups [12]. The study successfully classified the
depressed and non-depressed groups using mood question-
naires and the collected passive data. A study conducted by
Sükei et. al. showed that passively collected data from mobile
devices could also be used for predicting emotional states in
depressed patients [13].

Our research aimed at examining the use of passive
data and machine learning algorithms to classify the four
mood states in the Valence-Energetic Arousal space for both
healthy and depressed individuals. Our objective was to
determine the viability of these models for both groups and
to examine the potential of wearable technology in mental
health assessment. The data we gathered is representative
of a clinical trial context, where tracking mood changes in
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individuals moving from depression to recovery is essential.
During the data collection process, we also tested a wear-
able device for sleep modulation interventions, which could
introduce additional variability in the mood states and affect
the features used to train the model, providing a real-world
scenario.

II. MATERIAL AND METHODS

A. Data Acquisition and Dataset Characteristics

The data used in this research were collected for the Re-
mote Assessment and Sleep Modulation (RASM) pilot study.
See Fig. 1 for an overview of the study protocol. The study
procedure was approved by the ETH Zurich Ethics Com-
mission (ETHZ-EK 2021-N-153), and all participants signed
an informed consent form. We asked participants to wear
an electrocardiogram (ECG) patch (VivaLNK, VV330 1) on
the chest for the entire study duration of 35 days. The patch
recorded ECG at 128 Hz and had an embedded three-axis
accelerometer capturing XYZ raw acceleration at 25 Hz. Raw
data from an ECG patch was streamed to an android app
via Bluetooth during recordings and collected on a central
server. Participants also installed a mobile app that collected
data from an accelerometer sensor, Bluetooth connectivity,
phone and app usage, battery life, and location. An addi-
tional app was used for digital questionnaires at specific
times during the day. The mobile apps were based on the
RADAR platform [14]. During weeks 2 and 4, we asked the
participants to wear and test the MHSL-Sleepband v31 every
night, a wearable device for auditory sleep modulation. We
recruited 8 participants aged ≥18 years for the RASM pilot
study between November 2021 and March 2022 for the 35
days protocol. Of those, three were depressed patients (age
34.3±14.9, two female) and five non-depressed participants
(age 24.4±0.9, two female).

TABLE I
FEATURES EXTRACTED FOR CLASSIFICATION PER DATA TYPE.

Heart rate HRV Physical activity Mobility
Median LF Steps mean Time at home
Std HF Steps std Radius of gyration
Kurtosis LFHF Activity mean Random entropy
Min SDNN Activity std Max distance home
Max RMSSD N. of locations
Entropy Median NN Max distance

SDSD
MadNN
pNN50
Min NN
Max NN

B. Mood Classes

The task for our classification model was to distinguish
between four classes, defined as four different emotional
states associated with specific regions of the valence (V)
- energetic arousal (E) plane, see Fig. 2. This approach is
commonly used in psychology research, as it allows for a

1https://www.sleeploop.ch/

Fig. 2. Energetic Arousal (E) - Valence (V) plane with four class
regions. The self-reported labels with values 0-6 are used to identify the
corresponding class. The illustration shows the distribution of labels of the
healthy participants (pink) and depressed patients (purple).

more nuanced understanding of mood states beyond simple
categorization as ”happy” or ”sad”.

In the study, we used four questions, two assessing valence
(the degree of positivity or negativity) and two assessing
energetic arousal from a commonly used and validated 6-item
mood questionnaire [15]. We asked participants to complete
the mood questionnaire in the morning, after lunch, and in
the evening at predefined times (5:00-13:00, 11:00-14:00,
and 19:00 - 5:00). The items were rated on a scale from
0 to 6. For analyses, we re-coded the answers so that higher
scores indicated higher levels of valence or arousal. We
computed four classes of mood states by calculating the
mean valence and energetic arousal scores separately. We
then plotted the scores on a valence-arousal plane, divided
into four quadrants using a threshold of 3. Each quadrant
represented a different mood state: ”depression” (low V and
low E), ”stress” (low V and high E), ”happiness” (high V
and high E), and ”relaxation” (high V and low E).

TABLE II
LABEL DISTRIBUTION OF THE HEALTHY PARTICIPANTS (H1-H5) AND

DEPRESSED PATIENTS (D1-D3).

Participant Total Happy Stressed Depressed Relaxed
H1 50 34 10 4 2
H2 68 25 5 7 31
H3 39 13 7 5 14
H4 40 15 6 14 5
H5 40 14 5 9 12
D1 19 6 3 7 3
D2 14 5 0 6 3
D3 64 27 3 14 20

Total 334 139 39 66 90

C. Data Preprocessing

From the raw data collected, we extracted 28 features from
phone sensors and ECG patch; see Table I. In addition, the
time of the day (morning, afternoon, and evening) was added
as an input feature to give context to the data.



We extracted the heart rate (HR) time series from the
ECG and calculated simple measures, including the median,
standard deviation (std), maximum (max), and minimum
(min). We also calculated the entropy. Physical activity
metrics, such as the number of steps, were computed with
the sensormotion Python package (v.1.1.4) from the 3-axis
accelerometer data collected with the ECG Patch.

Heart rate variability (HRV) metrics were extracted us-
ing the NeuroKit2 Python package (v. 0.2.2) [16] from a
20 minutes ECG window centered around the time the mood
questionnaire was answered. The ECG was first converted to
a normal-to-normal (NN) sinus beat interval time series, and
then time domain and frequency domain HRV metrics were
calculated in the 20-minute segments.

We used GPS phone sensors to gather relative location
data from the participants. We then processed this data to
extract features from computed trajectories that describe
the relative location of the participant, such as the radius
of gyration, which measures how far an individual moves
around its center of mass (considered the participant’s home)
[17]. We used the scikit-mobility Python package [18] to
extract features from the raw relative location data, sampled
every 5 minutes. Data points in the GPS trajectories with
speeds higher than 300 km/h from the previous point were
considered noisy and removed. We determined the number of
visits by counting the total number of points in the trajectory
and the number of locations by counting the number of
unique points in the trajectory. We also calculated the time
spent at home and the maximum distance from home.

To ensure that the extracted features were in a comparable
range we applied normalization/scaling. We computed all the
features on the data collected on time ranges between mood
assessments: morning and afternoon, afternoon and evening,
and evening and morning.

D. Classification Pipeline

In this study, we used the Gradient Boosting classifier
from scikit-learn (v.1.1.0) library in Python (v.3.9.15) with
the default hyperparameter settings of the classifier (learning
rate of 0.1, 100 estimators, and a cross-entropy loss). The
algorithm calculated the importance of each feature by the
Gini importance metric relative to each other.

We also used a naive classifier, trained to consistently
predict the majority class present in the training set, as a
baseline. We considered this baseline the minimum perfor-
mance a model should achieve to be considered valuable.

We employed two different cross-validation approaches
to evaluate the performance of our proposed model. In the
first case, we utilized a leave-one-participant-out (LOPO)
strategy, where we excluded the data of a single patient from
the training set during each cross-validation iteration (general
model).

In the second case, we utilized a leave-part-of-one-
participant-out strategy, where only the last week of a par-
ticipant was excluded from the training set to create a more
”personalized” model (Perslw). These two cross-validation
approaches allowed us to evaluate the generalizability and

Fig. 3. Percentage of passive and questionnaires data obtained from
the healthy participants (H1-H5) and depressed patients (D1-D3) before
removing noisy data.

robustness of our model, as well as its ability to handle or
adapt to inter- and intra-subject variations in the data. Finally,
to have a fair comparison, we repeated the LOPO but tested
only on the last week (LOPOlw)

Using the torchmetrics (v.0.11.1) library and macro aver-
aging, we evaluated the accuracy (Acc.), balanced accuracy
(B. Acc.), and F1 score. We also computed the Area Under
the Precision-Recall Curve (AUPRC) and the Area under the
Receiver-Operating Characteristic Curve (AUROC) for the
overall multi-class problem.

III. RESULTS

We collected a dataset of passive data and self-reported
mood states from 8 participants for up to 35 days, three
times per day. Due to technical issues or some participants
not completing the full protocol, we ended with 716 samples
that had at least either passive data or completed ques-
tionnaires. See Fig. 3 for the percentage of passive data
and questionnaires obtained by each participant. During the
preprocessing step, we removed 104 samples due to missing
labels, 9 samples due to missing passive data from both
patch and smartphone, 94 missing smartphone data, and 85
missing/noisy patch data. A total of 334 samples were left
for analysis of the 8 participants.

Fig. 2 illustrates the distribution of labels across all partic-
ipants, distinguishing between healthy participants and those
diagnosed with depression. Table II shows the distribution
of the self-reported mood labels for each participant. The
results indicate that the number of self-reported labels was
lower among the depressed patients than the non-depressed
group.

The results of the classification of the LOPO utilizing
passive data are presented in Table III, showing a detailed
breakdown of the performance per participant as well as
an overall average. The comparison of the different cross-
validations is reported in Table III. The baseline model had
an average balance accuracy of 0.25 (0.0) and an average
AUPRC of 0.26 (0.1), whereas our classifiers had an average
balanced accuracy of up to 0.43 (0.12) and AUPRC of 0.41
(0.09). The LOPO and the Personalized models had very
similar evaluation metrics.

In Fig. 4, we illustrate the importance of the different
features. We computed the importance as the average relative



Fig. 4. This figure depicts the average importance of features during the
gradient-boosting training process (averaged across all participants). Only
features with an importance value above 0.3 are shown.

feature importance (given by the algorithm) between the
different test folds for the LOPO. Similar results were
obtained for the Perslw and are not reported.

TABLE III
CLASSIFICATION PERFORMANCE FOR THE LOPO REPORTED FOR EACH

FOLD (PARTICIPANT).

Subject Acc. B. Acc F1 AUPRC AUROC
H1 0.30 0.36 0.20 0.33 0.57
H2 0.51 0.36 0.34 0.35 0.61
H3 0.49 0.35 0.32 0.38 0.62
H4 0.35 0.23 0.18 0.30 0.54
H5 0.45 0.37 0.34 0.49 0.69
D1 0.32 0.29 0.26 0.39 0.55
D2 0.57 0.49 0.43 0.59 0.52
D3 0.31 0.25 0.25 0.31 0.54

Avg.(SD) 0.41(0.11) 0.34(0.08) 0.29(0.08) 0.39(0.10) 0.58(0.06)

TABLE IV
COMPARISON OF CLASSIFICATION METRICS FOR THE BASELINE

CLASSIFIER AND FOR THE ONE USING PASSIVE DATA EVALUATED USING

LOPO, LOPOlw , AND PERSlw CROSS-VALIDATION. RESULTS ARE

REPORTED AS AVERAGE (STANDARD DEVIATION) ACROSS FOLDS.

Baseline LOPO LOPOlw Perslw
Acc. 0.4 (0.11) 0.41 (0.11) 0.43 (0.12) 0.41 (0.11)

B. Acc. 0.25 (0.00) 0.34 (0.08) 0.34 (0.10) 0.34 (0.08)
F1 0.14 (0.03) 0.29 (0.08) 0.28 (0.10) 0.29 (0.08)

AUPRC 0.26 (0.03) 0.39 (0.10) 0.41(0.09) 0.39 (0.10)
AUROC 0.48 (0.04) 0.58 (0.06) 0.53 (0.11) 0.58 (0.06)

IV. DISCUSSION
Overall, using models trained on passive data allowed us

to classify mood states in our dataset with balanced accuracy
and AUPRC scores higher than the baseline model. The small
difference between the LOPOlw and Perslw cross-validation
suggests that this approach can help build classifiers adapted
to a participant’s characteristics while being generalizable
to other participants. We did not use models tailored to an
individual’s data, specifically those trained only on a single
participant’s data, because some participants did not experi-
ence a variety of emotions. These models may not perform
well in recognizing emotions that they have not seen before
during the training, leading to a lack of generalizability.

The model identified the entropy of HR, average physical
activity from the preceding 8 hours, max NN, and NN LFHF

ratio at the time of questionnaire completion as the most
important features in its analysis. Despite being crucial, the
time range of data collection is thought to mainly serve as
context, as the distribution of labels is not influenced by the
time of day.

While the classifier trained on passive data is not perform-
ing as well as we had hoped, it still shows potential and can
be improved upon in future work. We have identified several
reasons that could contribute to the modest performance of
the models. A possible explanation is that the dataset from
this pilot study may have a small sample size and a lack
of diversity in mood labels among participants, making it
challenging for the model to learn and apply to new data.
This is because many healthy individuals may not exhibit
symptoms of depression or stress. Another reason could be
the complexity of the task, as the classification performance
is driven by very subjective and biased labels. Unsupervised
methods that do not rely on self-reported labels could help
overcome this challenge and find unknown patterns for
symptom stratification.

It is important to note that collecting data over an extended
period, as in this study, only ensures that some emotional
states will be captured, as individuals may not consistently
or accurately report their moods.

Our data suggest that collecting self-reported labels from
depressed patients is more difficult than from healthy indi-
viduals due to their difficulty in expressing emotions, and
their tendency to withdraw, which may affect the accuracy
and reliability of the findings. The added difficulty in col-
lecting labels from depressed patients also poses additional
challenges when building machine learning models. As a
next step, semi-supervised methods should be explored, as
in our study, depressed patients seem to have fewer issues
with providing passive data. This also confirms the need to
develop unobtrusive tools for monitoring symptoms in the
depressed population, especially in the context of clinical
trials.

Despite the modest results, our study provides valuable
insights and contributes to the growing research on objective
mood assessment. Our study provides a benchmark for future
research in this area and highlights the challenges and
opportunities for improvement in this developing field.

V. CONCLUSIONS

This study aimed at exploring the feasibility of using
passive data from a phone and a wearable ECG patch to
classify four emotional states in depressed patients and non-
depressed participants. The results of this pilot study indicate
that it is possible to classify emotional states with slight
enhancement over a baseline model. The preliminary results
are encouraging and support the potential of this approach to
improve the design of objective assessments of interventions
that aim at modulating mood and emotional well-being.
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