
  

 

Abstract— Structural alterations of the midsagittal corpus 
callosum (midCC) have been associated with a wide range of 
brain disorders. The midCC is visible on most MRI contrasts 
and in many acquisitions with a limited field-of-view. Here, we 
present an automated tool for segmenting and assessing the 
shape of the midCC from T1w, T2w, and FLAIR images. We 
train a UNet on images from multiple public datasets to obtain 
midCC segmentations. A quality control algorithm is also built-
in, trained on the midCC shape features. We calculate intraclass 
correlations (ICC) and average Dice scores in a test-retest 
dataset to assess segmentation reliability. We test our 
segmentation on poor quality and partial brain scans. We 
highlight the biological significance of our extracted features 
using data from over 40,000 individuals from the UK Biobank; 
we classify clinically defined shape abnormalities and perform 
genetic analyses. 

I. INTRODUCTION 

A wide range of developmental and neurodegenerative 
disorders have been linked to alterations in the morphometry 
of the midCC [1]. While CC morphology variations have been 
seen in typically developing individuals, abnormal variations 
have been found in rare genetic disorders and complex, 
heritable, neuropsychiatric illnesses including schizophrenia, 
depression, autism, attention deficit-hyperactivity disorder, 
and bipolar disorder [2], suggesting midCC morphometry may 
be a promising trait for imaging genetics applications. 

Manual segmentation approaches, though time-
consuming, are widely used and are considered gold-standard 
methods [3]. However, automatic segmentation tools provide 
more time-efficient and more consistent alternatives [4]. 
Automated tools for the extraction of midCC shape metrics 
from brain MRI allow for the processing of large datasets, 
which can be used to chart neuroanatomical variations. Several 
existing automated methods have been applied to T1-weighted 
(T1w) images only [2,5-10]. 

Deep learning methods have been used for other 
segmentation applications in medical imaging. HDBET [11], 
Hippodeep [12], FastSurfer [13], and DeepnCCA [14] have 
been trained to segment the brain, hippocampus, cortex, and 
CC, respectively, using either UNet or 3D convolutional 
neural networks. DeepnCCA also segments the midCC, yet it 
does so only in T2w images and is only trained on data from 
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one scanner so may not be generalizable to data from other 
scanners. 

Making use of clinical scans, as opposed to only research 
quality scans, can open opportunities for larger, more 
representative studies of brain morphometry that pool data 
across multiple sites, such as [15]. However, clinical 
acquisitions may only include T1w images that are contrast-
enhanced along with a T2w or FLAIR image. To date there 
have been no published integrated pipelines for automated CC 
segmentation and quality control in multiple MR modalities. 
Furthermore, CC malformations, severe atrophy, and poor 
scan quality, as often seen in clinical scans, may pose 
challenges for some existing tools to accurately segment the 
midCC [16]. 

Here, we develop an automated multimodal pipeline using 
UNet trained on MNI registered T1w, T2w, and FLAIR 
images from UK Biobank (UKB), Alzheimer's Disease 
Neuroimaging Initiative (ADNI1), Human Connectome 
Project (HCP) and Pediatric Imaging, Neurocognition, and 
Genetics (PING) for midCC segmentation. We extract global 
and regional metrics including area, thickness, perimeter, and 
curvature. Using these shape metrics, we further develop a 
machine learning based component to automatically quality 
control (QC) segmentations. We show our segmentations and 
features are reliable using a dataset of test-retest subjects, and 
that we can extract the midCC in more clinical images when 
other pipelines are likely to fail. We also show that the features 
are biologically meaningful: 1) we determine the degree to 
which features can classify various common and rare CC 
abnormalities like hypoplasia, dysplasia and agenesis; 2) we 
calculate the heritability estimate on all CC shape metrics and 
perform a genome wide association on the most heritable trait. 

II. METHODS 

A. Midsagittal CC Segmentation 
 Images used for model training included midsagittal T1w, 

T2 and FLAIR slices, as available, from PING, HCP, UKB 
and ADNI1. All the images were registered to the MNI-space 
with 6 degrees of freedom using FSL’s flirt. The midCC was 
initially segmented with image processing techniques [17] 
then visually verified and manually edited by 
neuroanatomical experts.  
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TABLE I.  DATASETS DEMOGRAPHIC INFORMATION 

Dataset 
Imaging 
Modality 

Age 
(In years) 

Total 
Count 

Female 
Count 

ADNI1train T1w 75.05  6.83 722 310 

PINGtrain 
T1w 12.33  4.85 761 417 
T2 12.49  4.56 426 263 

HCPtrain 
T1w 22-37 614 349 
T2 22-37 305 190 

UKBtrain 
T1w 61  7.39 120 70 

FLAIR 61.05  7.39 112 64 
HNUtest T1w 24.36  2.41 30 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Data augmentation techniques - A. T1w MR image B. 
downsampled MR images by a factor of 2, 3, 4 and 5 C. MR images rotated 
in increments of 15 degrees D. Random size black boxes added. 
 

 All the images were downsampled by a factor of 2, 3, 4 
and 5 along the sagittal axis and then up sampled back to the 
original size using the mrgrid function from MRtrix [18] to 
include low resolution/clinical quality images into training. 
Image contrasts were altered as described in [19], to include 
lower quality T1w images using a subject from ICBM as the 
reference. All images were then rotated clockwise in 
increments of 15 degrees and then resized to 256 x 256. 
Random black boxes were added on the MR images to mimic 
partial agenesis cases in the model training. Fig. 1 illustrates 
the output from data augmentation techniques. A TensorFlow 
implementation of UNet [20] was trained on 80% of the data 
for 250 epochs until the difference between the intersection 
over union (IOU) after consecutive iterations was less than 
1x10-4; we used the following training parameters: 1x10-4 
learning rate and an Adam optimizer; the rest of the data was 
used for validation. We calculated the mean IOU, the area of 
overlap between the predicted segmentation and the ground 
truth. 

B. CC Metrics Extraction 
 Features describing full and regional shape metrics based 

on the JHU atlas [21] were extracted from segmentations as 
described in [17]. Fig. 2C shows the full area (green), 
perimeter (red), thickness (black), and curvature (blue). 

C. Auto Quality Control (QC) 
 Manually assessed CC segmentations from UKB 

(N=12,902, aged 45-81yo), ADNI1 (N=724, aged 54-91yo), 
PING (N=857, 3-21yo) and HCP (N=615, 22-37yo) served as 
the ground truth for QC (split 80/20 for train/test). 

To classify the UNet segmentations as "pass" or "fail", we 
tested several model architectures: a 3-layer sequential neural 
network with 42 neurons in the first layer, 22 in the second 
layer, and 11 in the third layer; a wide & deep neural network 
with 80 neurons in the first 3 layers and 40 in the last 3 layers 
and an ensemble model using scikit-learn. The ensemble 
model consisted of 5 different classifiers: XGBoost, K-
nearest neighbor (KNN), support vector classifier (SVC), 
logistic regression and random forest classifier. The results 
from all the 5 models were combined using a hard majority 
voting classifier. We compare these models based on metrics 
like precision, recall and AUC (area under the curve). 

D. Assessing Accuracy and Reliability 
 We ran the tool on all the 30 subjects from the HNU 

dataset where each subject was scanned 10 times within 40 
days. We manually segmented CC for all 300 scans and 
calculated the Dice coefficients between ground truth 
segmentations and the automated ones. We extracted the 
shape metrics and calculated the intraclass correlation (ICC2) 
to assess the reliability of segmentations. 

E. Applications for Biological Significance 
 For all 45,336 subjects in the UK Biobank for which MR 

scanning sessions were available at the time of analysis, we 
visually labeled likely CC abnormalities from T1w scans: 
hypoplasia (CC_H; uniformly thin structure), dysplasia 
(CC_D; disturbance in the overall shape), both hypoplasia and 
dysplasia (CC_HD) and partial or full agenesis (missing some 
or all of the CC) [22]. Segmentation, feature extraction and 
QC of all UKB scans were performed on the T1w scans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A. UNET model architecture for CC segmentation. B. Regional 
segmentation based on JHU atlas. C. Overview of metrics extracted from the 
CC. D. Normal CC example (N=44,190). E. Hypoplasia example, (N=772). 
F. Dysplasia example, (N=307). G. Hypoplasia with dysplasia example, 
(N=51). H. Partial agenesis example (N=4). I. Complete agenesis (N=1).  
J. Model architecture for abnormality classification. 
 
 

 



  

TABLE II.  UKB DATA SPLIT BASED ON CC SHAPE ABNORMALITIES 

Abnormality Train Count 
(Original) 

Train Count 
(after balancing) 

Test 
Count 

Normal Subset 739 739 317 
Dysplasia (Dys) 181 600 77 

Hypoplasia (Hyp) 509 509 218 
Dys + Hyp 27 200 12 
Agenesis 3 3 1 

 
A neural network was trained to get a probability score for 

each of the abnormalities based on the CC shape metrics, we 
refer to these scores as: Normal NN; Dysplasia NN; 
Hypoplasia NN; Hypoplasia + Dysplasia NN; and Agenesis 
NN. These were then added to the midCC shape metrics to 
train an XGBoost classifier to classify the data into groups for 
normal and malformations mentioned above. We report the 
top features used for classification. 

We calculate the heritability estimate (h2) of all global CC 
metrics using Genome-Wide Complex Trait Analysis 
(GCTA) [23] and conduct a genome-wide association 
analysis (GWAS) on the total area of the midCC in SAIGE 
[24]. The analysis was conducted on T1-weighted scans from 
42,080 individuals of European ancestry in the UK Biobank 
while covarying for age, sex, age-by-sex, and 10 genetic 
principal components; a mixed-effects model was used to 
account for genetic relatedness. 

 

III. RESULTS 

We test our CC pipeline on example images from low 
quality or cropped datasets including slab data from ADNI3 
(HHR) and older data from NACC; we show successful 
segmentations of these and a partial agenesis case from the UK 
Biobank in Fig. 3. 

 

 

 

 

 

 

 
 

 

Figure 3. Successful midCC segmentations for – A. A low resolution and 
noisy NACC T1w GRE scan B. NACC T2 FLAIR scan C. ADNI3 
Hippocampal High Resolution partial brain scan   D. UKB subject with partial 
agenesis 

A.  Validation results for CC Segmentation and AutoQC 
 The mean IOU for the CC segmentation in the validation 

set was 0.94. Global metrics including area, perimeter, and 
mean thickness along with regional metrics including the 
splenium maximum thickness, were the most important 
features for classifying segmentation quality. 

 

TABLE III.  COMPARISON OF PERFORMANCE OF DIFFERENT MODELS 
FOR AUTOMATIC QUALITY ASSURANCE BASED ON MIDCC SHAPE METRICS 

Model Class Precision Recall F1 AUC 
3 layer 

NN 
Pass 0.96 0.99 0.97 

0.866 
Fail 0.93 0.74 0.83 

Wide/ 
deep NN 

Pass 0.96 0.98 0.97 
0.866 

Fail 0.88 0.75 0.81 

XGBoost 
Pass 0.96 0.99 0.98 

0.868 
Fail 0.94 0.74 0.83 

Ensemble 
Pass 0.96 0.99 0.98 

0.864 
Fail 0.96 0.73 0.83 

B.  Abnormality classification results 
 Accuracy was good in the UKB test set for normal (0.8), 

CC_D (0.8) and CC_H (0.93) cases. The bar plot in Fig. 4 
shows the topmost important features for the classification-
features derived from neural network, overall and regional CC 
thickness. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The top features important for classifying the subjects into normal 
and various abnormalities are features from neural network and regional 
thickness metrics. 

C. Testing on a Test-Retest Dataset 
 The average Dice coefficient between automated CC 

masks and manually drawn masks was 0.941 across all the 
subjects. The average intraclass correlation (ICC) values 
across all subjects (between sessions) for all CC metrics are 
shown in Fig. 5. 

 
Figure 5. ICC2 for HNU test-retest dataset for all CC metrics.   

 

 

 



  

D. Heritability and Genome-Wide Association Results 
Heritability estimates of global midCC metrics are 

available in Table 4. All metrics had heritability while total 
area of the midCC had the greatest heritability at h2 = 0.71 
(SE = 0.015). The genetic correlation between total area and 
FA was small but significant (rG = 0.14, SE = 0.022). 
 
 
 
 
 
 
 
 
Figure 6. GWAS conducted in SAIGE of total area of the midCC reveals 43 
significant loci. 

TABLE IV.  HERITABILITY ESTIMATES OF MIDCC METRICS IN N=42,080 

Metric h2 SE 
Total Area 0.71 0.05 
Total Curve 0.49 0.09 
Total MeanCurve 0.21 0.02 
Total StdCurve 0.18 0.02 
Total MaxCurve 0.16 0.01 
Total MeanThick 0.61 0.01 
Total StdThickness 0.49 0.01 
Total MaxThickness 0.54 0.01 
Total MinThickness 0.03 0.01 
Total Perimeter 0.47 0.01 
Total EuclideanDist 0.24 0.01 
Total MedialCurveLength 0.50 0.01 

 

IV. CONCLUSION AND DISCUSSION 

 Our multimodal all-in-one tool allows for accurate 
segmentation of the midsagittal CC, along with a method to 
automatically label segmentations as valid or inaccurate in 
T1w, T2 and FLAIR images. The extracted features could be 
used for downstream analyses to chart developmental and 
degenerative trajectories. Although biological significance 
was shown with T1w data only, our reliability analyses across 
image contrasts confirms CC shape metrics derived from 
other data modalities may be pooled with those from T1w 
scans and used for larger scale multi-site initiatives [15]. 
Future work includes conducting a comprehensive mapping 
of the genetic architecture of the regional CC metrics, and 
their associations with neuropsychiatric conditions. 
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