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Abstract— Electrical properties (EPs) are expected as
biomarkers for early cancer detection. Magnetic resonance
electrical properties tomography (MREPT) is a technique to
non-invasively estimate the EPs of tissues from MRI mea-
surements. While noise sensitivity and artifact problems of
MREPT are being solved progressively through recent efforts,
the loss of tissue contrast emerges as an obstacle to the
clinical applications of MREPT. To solve the problem, we
propose a reconstruction error compensation neural network
scheme (REC-NN) for a typical analytic MREPT method, Stab-
EPT. Two NN structures: one with only ResNet blocks, and
the other hybridizing ResNet blocks with an encoder-decoder
structure. Results of experiments with digital brain phantoms
show that, compared with Stab-EPT, and conventional NN
based reconstruction, REC-NN improves both reconstruction
accuracy and tissue contrast. It is found that, the encoder-
decoder structure could improve the compensation accuracy of
EPs in homogeneous region but showed worse reconstruction
than only ResNet structure for tumorous tissues unseen in
the training samples. Future research is required to address
overcompensation problems, optimization of NN structure and
application to clinical data.

I. INTRODUCTION

Electrical properties (EPs: conductivity σ and permittivity
ε) are expected as biomarkers for early cancer detection [1],
[2], [3]. Since the conductivity of tissues generally depends
on the ionic concentration of electrolytes within the tissue,
and the permittivity is influenced by the extent of the cell
membrane, it is possible to distinguish different tissues by
virtue of the difference in EPs. It has been suggested that the
EPs of cancerous tissues are significantly higher than those
of surrounding normal tissues, making EPs potentially useful
for separating and identifying healthy and cancerous tissues.

Magnetic Resonance Electrical Properties Tomography
(MREPT) is a non-invasive imaging modality that can be
utilized to evaluate the electrical properties of tissues in the
body. The numerical MREPT method is a reconstruction
approach that is specifically derived from the Maxwell’s
equations and it is used to calculate the tissue’s EPs. By
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using MREPT, it may be possible to distinguish between
healthy and cancerous tissues based on their unique electrical
properties, which may enhance the accuracy and specificity
of cancer detection, particularly at early stages.

However, numerical MREPT methods that are based on
analytic models have several limitations. Firstly, The differ-
ential terms of analytic models are sensitive to noise and
lead to artifacts [4]. Secondly, The homogeneous assumption
causes artifacts at tissue boundaries [1]. In order to address
these limitations of numerical MREPT methods, researchers
have investigated several alternative approaches, including
data-driven neural network methods [5], modified analytic
models [6], or a combination of both [7], [8]. While these
approaches have made progress in solving the problems with
noise and artifacts in MREPT, a significant obstacle to the
clinical use of MREPT remains the loss of tissue contrast [9].
This is often a result of the diffusion and/or smoothing
techniques that are used in these approaches to mitigate noise
and artifact issues. These methods can effectively reduce the
impact of noise and artifacts, but they can also reduce the
contrast between different types of tissue. This can lead to
difficulty in distinguishing between healthy and cancerous
tissue, which is an important goal for the clinical application
of MREPT. Thus, it is crucial to find a balance between
noise reduction and tissue contrast preservation in MREPT
methods for clinical applications.

This study originated from the conjecture that it is more
effective for an artificial neural network to capture the
real nature of the problem through learning the residual
of intermediate results with respect to ground truth than
directly learning ground truth itself [10]. Thus, we proposed a
reconstruction error compensation neural network (REC-NN)
for a typical analytic MREPT method, Stab-EPT. The REC-
NN takes the ResNet architecture [11], which learns the error
between conductivity values reconstructed by Stab-EPT and
ground truth (i.e., the residual of the Stab-EPT) via features
selected.

II. METHOD

The components of REC-NN are shown in Figure 1. The
input features of REC-NN are transceive phase ϕ tr (Figure
1(a)), its first-order deviation ∇ϕ tr (Figure 1(b)), its second-
order deviation ∇2ϕ tr (Figure 1(c)) and conductivity σStab
(Figure 1(d)) reconstructed through Stab-EPT. The features
were selected through a preliminary experiment.

In Stab-EPT [6], a diffusion term was added to cr-EPT [12]
for diffusing the artifacts generated by numerical computa-
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Fig. 1. A diagram of REC-NN scheme and its implementation. RB stands for ResNet block, and E-D is the abbreviation of encoder-decoder structure.

tion errors, especially in tissue boundary areas, as shown in
Equation (1).

−ρ∇
2
γ +∇γ∇ϕ

tr + γ∇
2
ϕ

tr = 2ωµ0 (1)

where ρ is a diffusion coefficient, γ is the inverse of
conductivity σ , ϕ tr is transceive phase of magnitude field, ω

is Lamour frequency of MR system, µ0 is the permeability
of vacuum.

The output of REC-NN is the error ∆σ̂ (Figure 1(e)) be-
tween Stab-EPT reconstructed conductivity σStab and ground
truth σgt (Figure 1(g)). The loss function of REC-NN is MSE
(mean square error) between estimated error ∆σ̂ and true
error ∆σ (Figure 1(f)). The σStab was compensated with the
estimated error ∆σ̂ .

Two different networks were used. The first one, REC-
NN1 is comprised of only ResNet blocks (22 layer, 11
blocks). The second one, REC-NN2 contains an encoder-
decoder structure (4 layers, 2 blocks with 32 neurons and 4
layers, 2 blocks with 16 neurons) [14] besides ResNet blocks
(14 layers, 7 blocks). Their sensitivity to cancerous tissues
contained in the samples not included in the training dataset
was compared.

Besides, to further confirm our conjecture, two direct
electrical properties estimation (EPE) models, EPE-NN1
and EPE-NN2, using the neural network structures same as
the REC-NN1 and REC-NN2, respectively, were built for
comparison. The input features for EPE models are same as
those of REC models, except that σStab was not included.

The proposed method and EPE model successfully im-
plemented and evaluated using Python 3.9.12 and PyTorch
1.12.1 with CUDA 11.3. The experiments were conducted on
a workstation equipped with an Intel® Xeon® Gold 5122
CPU @ 3.60GHz, 48GB RAM, and an NVIDIA GeForce
RTX 3080 Ti 12GB graphics card.

The digital head human (DHH) dataset included 30 brain
slices from the virtual humans [13] Duke and Ella from
the Sim4life (ZMT) platform. A single slice from Duke
and another from Ella were designated as the testing set,
while the remaining slices of the DHH dataset were utilized
as the training set. To further evaluate the performance of
the proposed model, 20 slices from the Ella dataset contain
artificially introduced tumors of varying dimensions (2, 4, 6,

Fig. 2. Portion of DHH dataset samples

and 10 mm) and a total of 80 tumor samples are also used
as the testing set. A portion of test samples is depicted in
Figure 2.

III. RESULTS

Fig. 3. Results of a single slice from Duke

In Figure 3, the first column depicts the ground truth
conductivity (Figure 3(a)), the conductivity calculated using
the Stab-EPT method (Figure 3(b)). The second column
shows the conductivity estimated using the EPE-NN1 method
without encoder-decoder (Figure 3(c)), the conductivity es-
timated using the EPE-NN2 method with encoder-decoder
(Figure 3(d)). The third column displays the conductivity
compensated by the REC-NN1 method without encoder-
decoder (Figure 3(e)), the conductivity compensated by the
REC-NN2 method with encoder-decoder (Figure 3(f)). The
nomenclature in the subsequent results is the same as in



Figure 3. The performance of the results is evaluated using
two image evaluation metrics; namely the normalized root
mean square error (NRMSE) and the structural similarity
index (SSIM), and compared with the ground truth.

As seen from the figure, both REC and EPE models have
much better performance than Stab-EPT. With same neural
network structure, REC-NN shows better reconstruction than
EPE-NN (REC-NN1 vs. EPE-NN1: 0.977 vs. 0.961, REC-
NN2 vs. EPE-NN2: 0.968 vs. 0.962, with respect to SSIM).
REC-NN-1 resulted in the best reconstruction.

Fig. 4. Results of a single slice from Ella

As seen from Figure 4, for the test samples unseen in
training dataset, both REC and EPE models have better
performance than Stab-EPT. Though, different from the
reconstruction for samples in the training dataset, EPE-NN2
(SSIM 0.771) showed better reconstruction than both EPE-
NN1 (SSIM 0.739) and REC-NN1 (SSIM 0.753), while
REC-NN2(SSIM 0.711) is the worst among the 4 models.

Fig. 5. Results of reconstruction of one 4 mm tumor sample

The reconstructions of a 4 mm tumor sample are pre-
sented in Figure 5. While all the REC and EPE models
exhibited higher SSIM and lower NRMSE than Stab-EPT,
the reconstruction of the tumor is not visually clear. Further
comparisons were made, focusing on the contrast of the
different tissues (CSF, gray matter, white matter and tumor).

Table I shows the mean conductivity values of each tissue
type obtained from various methods, compared to the corre-
sponding values in the ground truth. The conductivity values
of cerebrospinal fluid (CSF), gray matter, white matter, and
tumor in the ground truth are 2.143, 0.586, 0.343, and 1.200,
respectively, with a ratio of 1.79:0.49:0.29:1. The method
with the closest contrast between CSF and tumor to the
ground truth is Stab-EPT (1.57:1). The methods with the
closest contrast between gray matter and tumor to the ground
truth are REC-NN1 and REC-NN2 (0.84:1). The method
with the closest contrast between white matter and tumor
to the ground truth is REC-NN1 (0.51:1).

Table II presents the mean tissue contrast for the samples
containing tumor with diameter of 2 mm, 4 mm, 6 mm,
and 10 mm. Compared to the ground truth, the proportion
of CSF in tumor samples in Stab-EPT was slightly reduced,
as well as the proportions of gray matter and white matter.
However, the proportions of CSF, gray matter, and white
matter in tumor samples in EPE-NN1, EPE-NN2, REC-NN1,
and REC-NN2 were found to be significantly increased.
Among these methods, REC-NN1 and REC-NN2 showed
improved tissue ratios compared to EPE-NN1 and EPE-NN2,
with REC-NN1 exhibiting slightly better results than REC-
NN2.

IV. DISCUSSION

In this study, we conducted a comparison between the
REC-NN and EPE-NN models, as well as with/without
an encoder-decoder structure. Our results showed that the
proposed REC-NN can improve both reconstruction accuracy
and tissue contrast for test samples unseen in a small training
dataset.

For Figures 3 and 4, it is demonstrated that both REC-
NN and EPE-NN exhibit noteworthy performance on the
corresponding type of datasets in the test set. The imple-
mentation of the encoder-decoder improved the accuracy
of homogeneous regions but resulted in the appearance of
yellow or dark blue artifacts at the boundaries. These artifacts
occurred because the values at these points exceeded the
maximum and minimum conductivity of the three tissues
in the samples. This phenomenon is referred to as the
”overcompensation” problem. Due to the overcompensation
at the boundary area, the resulting SSIM and NRMSE may
be slightly worse than REC-NN1, which does not have an
encoder-decoder structure, in some cases.

The results of the comparison of 4 mm tumor samples,
as depicted in Figure 5 and Table I, indicate that the Stab-
EPT method achieved the best CSF-to-tumor contrast. This
is because it gave a best estimation of EPs of tumor region,
which can be seen as the advantage of the physics-based
approach: no prior is necessary. Though the artifact by the
Stab-EPT, as shown in the figure 5, causes low reliability
of its EP reconstruction. On the other hand, although tumor
tissue is unseen to both REC-NN and EPE-NN, they can give
an estimation sufficient to distinguish from its region, and
better estimation of gray matter and white matter than Stab-
EPT. Moreover, REC-NN1 and REC-NN2 can achieve better



TABLE I
MEAN CONDUCTIVITY VALUES OF EACH TISSUE AND THEIR TISSUE-TO-TUMOR RATIO OF ONE 4 MM TUMOR SAMPLE

Ground truth Stab-EPT EPE-NN1 EPE-NN2 REC-NN1 REC-NN2

CSF 2.143 2.008 2.079 2.076 2.091 2.126
gray matter 0.586 1.116 0.583 0.580 0.592 0.583
white matter 0.343 0.838 0.369 0.366 0.360 0.364
tumor 1.200 1.280 0.501 0.597 0.708 0.689

ratio 1.79:0.49:0.29:1 1.57:0.87:0.65:1 4.15:1.16:0.74:1 3.48:0.97:0.61:1 2.95:0.84:0.51:1 3.09:0.84:0.53:1

TABLE II
TISSUE-TO-TUMOR RATIO FOR ALL THE TUMOR SAMPLES (CSF:GRAY MATTER:WHITE MATTER: TUMOR)

Ground truth Stab-EPT EPE-NN1 EPE-NN2 REC-NN1 REC-NN2

2 mm

1.79:0.49:0.29:1

1.19:0.97:0.60:1 2.19:0.68:0.40:1 2.17:0.68:0.40:1 2.07:0.66:0.38:1 2.21:0.68:0.40:1
4 mm 1.17:0.95:0.59:1 2.22:0.69:0.42:1 2.18:0.69:0.40:1 1.94:0.62:0.36:1 2.16:0.68:0.40:1
6 mm 1.21:0.98:0.61:1 2.23:0.75:0.45:1 2.38:0.86:0.52:1 1.84:0.65:0.39:1 2.20:0.82:0.50:1
10 mm 1.23:0.97:0.62:1 2.38:0.77:0.47:1 2.44:0.88:0.53:1 2.01:0.71:0.43:1 2.17:0.82:0.50:1

estimation for tumor than EPE-NN1 and EPE-NN2. This
suggests that once the REC-NN1 and REC-NN2 can make
better estimation for tumor region, e.g., through optimization
of NN structure, the reconstructed contrast can be further
improved.

The encoder-decoder structure demonstrated the general-
ization for EPs distribution of Ella phantom similar to but
unseen in the training dataset from Duke phantom. However,
its generalization to artificially added tumors is limited, as
evidenced by the results in Table I. The implementation of
the encode-decode structure in the REC-NN2 model resulted
in improved accuracy for CSF and gray matter, but a slight
degradation in the accuracy for white matter and a further
deviation from the ground truth for tumor predictions. In
fact, the deviation of tumor EP values from its ground truth
is the major factor causing degradation of tissue-to-tumor EP
contrast (EP ratio) shown in Table II.

Additionally, despite utilizing a small dataset in this study,
the utilization of the encoder-decoder structure resulted in
a significant reduction in computational efficiency, with a
decrease of 15.05% and 16.67% in training and testing time
respectively. This provides valuable insight for the design of
future neural network experiments, as it highlights the need
to strike a balance between computational complexity and
generalization ability when working with larger datasets.

In conclusion, our results indicate that the REC-NN ap-
proach holds potential for the compensation of conductivity,
despite the challenges associated with its generalization
ability of different distribution of EPs and overcompensation
problems. Future research is required to optimize the NN
structure to further improve the tissue contrast, and to address
overcompensation problems, aiming for the application to
clinical data.
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