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Abstract— Recently, hybrid prosthetic knees, which can
combine the advantages of passive and active prosthetic
knees, have been proposed for individuals with a transfemoral
amputation. Users could potentially take advantage of the
passive knee mechanics during walking and the active power
generation during stair ascent. One challenge in controlling
the hybrid knees is accurate gait mode prediction for seamless
transitions between passive and active modes. However, data
imbalance between passive and active modes may impact the
performance of a classifier. In this study, we used a dataset
collected from nine individuals with a unilateral transfemoral
amputation as they ambulated over level ground, inclines, and
stairs. We evaluated several machine learning-based classifiers
on the prediction of passive (level-ground walking, incline
walking, descending stairs, and donning and doffing the
prosthesis) and active mode (ascending stairs). In addition, we
developed a generative adversarial network (GAN) to create
synthetic data for improving classification performance. The
results indicated that linear discriminant analysis and random
forest might be the best classifiers regarding sensitivity to the
active mode and overall accuracy, respectively. Further, we
demonstrated that using the GAN-based synthetic data for
training improves the sensitivity of classifiers.

I. INTRODUCTION

The goal of prosthetic devices is to restore functional
mobility for amputee patients. For individuals with a trans-
femoral amputation, the wide variety of prosthetic knees
generally can be categorized into three types: passive,
active, and hybrid knees. Passive prosthetic knees [1] mainly
contain hydraulic or pneumatic passive components to ad-
just the resistances of knees for ambulation. While these
passive devices account for nearly all commercially avail-
able knees on the market, they cannot provide additional
energy to users; users often have difficulty with energy-
demanding activities, such as stair ascent or sit-to-stand.
Active (powered) prosthetic knees [2], [3], [4], [5] contains
actuators to control joints. Actuating joints facilitate energy-
demanding ambulation with a reciprocal gait. However,
often the benefits of passive mechanics are lost with these
active devices and the complexity of the control system
often is increased as more activities are restored. In addition,
motor components and additional components related to
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their driving, such as a battery, increase the weight and costs
of the knees.

Recently, hybrid knees [6], [7], [8], capable of active
and passive control, have been proposed. These types of
knees take advantage of properties of both passive and active
knees. The passive mechanism is often controlled by a mi-
croprocessor which adjusts the resistance of the prosthesis
through stance and swing phase to allow natural gaits. On
the other hand, the active mechanism can be engaged to
control the knee only when performing energy-demanding
ambulation. Hybrid knee devices have the potential to
consume less battery power since energy is only required
for a limited number of activities; the passive component
is engaged for the majority of ambulation. Depending on
the control architecture, hybrid knees have the potential
to decrease control complexity compared with fully active
knees. In addition, the weight or size of the system likely
can be reduced.

One of the challenges in controlling hybrid knees is to
allow intuitive and seamless transitions between the passive
and active modes. Correct prediction of active mode could
allow a user to take advantage of passive dynamics during
walking but then seamlessly transition to active control for
climbing stairs with a reciprocal gait thereby likely lowering
user burden.

For fully active devices, various machine learning-based
classifiers have been proposed to predict ambulation modes.
For example, Linear Discriminant Analysis (LDA) [9] is a
well-known method that has been used to predict transitions
between level walking, incline walking, and stairs. A Gaus-
sian mixture model [10] has also been proposed to classify
ambulation modes, including standing, sitting, and walking.
Recently, neural network-based prediction methods have
been proposed as well, such as using surface electromyogra-
phy and inertial measurement unit data to predict gait mode
transition between level-ground walking and incline walking
using a multilayer perceptron [11], and using convolutional
neural networks for depth sensor-based prediction [12] of
mode transition between level-ground walking and various
locomotion modes, including ascending/descending stairs
and incline walking, as well as vice versa. For hybrid
devices, a classifier may have difficulty identifying the
active mode because likely passive and active modes are not
represented equally. In other words, the amount of ambula-
tion for passive and active modes is imbalanced during the
course of an average user’s day. Most ambulation activities
during daily living can be accomplished with a passive knee
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(e.g., level-ground walking or descending stairs). Active
mode for ambulation activities that require power generation
at the knee represent a much smaller portion of the user’s
day (e.g., climbing stairs). These aspects may affect the
balance of data collected as well as predictive performance.
Although various gait mode predictors have been proposed,
it is not currently known which classification techniques can
best predict between passive and active modes for hybrid
control.

This study focused on evaluating several general machine
learning classifiers for hybrid knee control. In addition,
as a preliminary step to overcome the imbalance between
the amount of data between passive and active modes, we
propose a generative adversarial network (GAN)-based data
augmentation to improve the performance, especially in
terms of sensitivity to the active mode. Nine individuals with
a transfemoral amputation performed ambulation activities
using pre-developed state machine-based controller [13]
including level-ground walking, incline walking, descending
stairs, and donning and doffing the prosthesis as passive
mode and ascending stairs in active mode. Gait mode
prediction was evaluated via an offline analysis. Our test-
ing results indicated that LDA is adequate for gait mode
prediction of hybrid prosthetic knees, and GAN-based data
augmentation has the potential to improve the sensitivity of
classifiers to the active mode.

II. METHODS

A. A hybrid knee prosthesis

We used a lightweight hybrid knee [6]; the details are
described in [6] and [13]. The control system is based on a
finite state machine, as shown in Fig. 1.

In the passive control, a variable and tunable electronic
brake adjusted resistance. The passive controller was used
for passive walking (PW) modes: level-ground walking,
incline walking, descending stairs, and donning and doffing
the prosthesis.

In active control, an impedance controller has been im-
plemented [13], [14], according to the following equation:

τ = −k(θ − θeq)− bθ̇ (1)

where τ represents the joint torque, θ and θ̇ represent the
knee angle and velocity, respectively, and k, b, and θeq

denote the stiffness, damping coefficient, and equilibrium
angle, respectively. These three impedance parameters (i.e.,
stiffness, damping coefficient, and equilibrium angle) for
stair ascent (SA mode) were tuned for each user.

B. Data collection

Nine individuals with a transfemoral amputation partici-
pated in this study. This study was approved by Northwest-
ern University Institutional Review Board, and participants
provided written informed consent. Each participant was fit
to the hybrid knee and an Ossur Low Profile Vari-flex foot.

A data collection protocol is the same as our previous
work [13]. The impedance parameters in finite state ma-
chines for active control were tuned for each user [14], and

the amount of resistance during passive control was tuned
for each state. Transitions between PW and SA modes were
controlled via a key fob and occurred at toe-off.

The users performed 10 trials of level-ground walk-
ing, ascending/descending inclines, ascending/descending
stairs, and donning/doffing the prosthesis. Ambulation dur-
ing level-walking, inclines, descending stairs and don-
ning/doffing were not classified but rather grouped together
as PW modes. Only stair ascent was considered as the active
mode (i.e., SA mode).

During data collection, data from sensors embedded in
the hybrid knee, including a six-axis load cell, 3-axis ac-
celeration, 3-axis gyroscope, lower limb joint angles (thigh,
and shank angles), knee position and velocity, and requested
and actual knee motor currents, were continuously collected
at 125 Hz. Then, we extracted six features per sensor data,
including initial, final, minimum, maximum, mean values,
and standard deviation, from the 300 ms windows that
started 275 ms prior to toe-off and ended 25 ms after toe-
off, based on our previous work [15]. Therefore, all 108
features were extracted for every toe-off and subsequently
scaled from -1 to 1. The number of data per user is shown
in Table I.

TABLE I: The number of steps in each gait modes per user.

User PW mode SA mode
TF1 1078 42
TF2 1268 51
TF3 757 48
TF4 1255 41
TF5 963 60
TF6 1094 69
TF7 816 46
TF8 715 36
TF9 870 73
All 8816 466

C. Software

This study used Scikit-Learn (v. 1.1.3) and TensorFlow
(v. 2.8.0) libraries in Python (v. 3.9) on a laptop (Nitro 5,
Acer) with Windows 11, an NVIDIA GeForce RTX 3050Ti
Laptop GPU, and 32GB DDR4 RAM.

1) Machine learning classifiers: We used general ma-
chine learning classifiers available in Scikit-Learn with
default values for the algorithm parameters: LDA, Support
Vector Machine (SVM), Random Forest (RF), Quadratic
Discriminant Analysis (QDA), Decision Tree (Tree), and
Gaussian Process (GP).

2) Data augmentation: We adopted generic structures of
deep convolutional GANs [16] for data augmentation. The
overall flow is described in Fig. 2.

A one-dimensional sensor data array of size 108 was
reshaped to a two-dimensional matrix of size 18 by 6 to
train the proposed GAN model (i.e., outputs of the generator
and inputs to the discriminator).

The input data to the generator was an array of size 100,
and it was produced randomly every epoch. The Input values
from index 0 to 9 were set to -1 if the corresponding class of
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Fig. 1: Finite state machine-based hybrid control. In passive control (PW), an electronic brake controlled the amount of
resistance for each state. In active control (SA), an impedance controller has been implemented. The transitions between
passive and active modes (green dashed lines) were controlled via a key fob. Here, TO and HC represent toe-off and heel
contact, respectively.
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Input[0]~Input[9] is
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Fig. 2: GAN-based data augmentation. (a) Sensor data were
reshaped for use as output data in the GAN. During the
training, the generator produced output data (i.e., synthetic
sensor data) from random noise. (b) Although both PW and
SA data were used to train the GAN, only the synthetic PW
data were used to train classifiers.

the output sensor data was PW mode and 1 otherwise. The
input values in the remaining indexes were random values
from -1 to 1.

The discriminator consists of:
Input-Fl-D54-D9-D1 (Output)
The generator consists of:
Input-d864-r(18,6,8)-C4-BN-C2-BN-c1 (Output)
Here, Fl denotes a flattening layer, Dk denotes a dense

layer of k units with no activation function, dk denotes a
dense layer of k units with Leaky Rectified Linear Unit
(LeakyReLU) activation, r(x,y,z) denotes a reshaping layer
that reshapes inputs into the x, y, z shape, Ck denotes
a transposed two-dimensional convolution layer with k

filters with LeakyReLU, BN denotes batch normalization,
and ck denotes a transposed two-dimensional convolution
layer with k filters with hyperbolic tangent activation. All
convolution layers have the same padding, kernel size of (5,
5), stride length of (1, 1), and with no bias vector.

The GAN was trained for 20 epochs (a batch size of 128,
ADAM with a learning rate of 0.001). The training time for
the GAN was about 5 minutes per user.

After training, synthetic PW data were generated; the
number of synthetic data was the same as that of original
PW training data. Then, classifiers were trained on the
original training data and synthetic PW data.

D. Evaluation

Sensitivity to SA mode and overall accuracy were calcu-
lated in order to evaluate the classifiers. Accuracy indicates
the ratio between the number of all correct predictions and
the total number of all data; sensitivity to SA mode indicates
the ratio between the number of correct predictions of SA
and the total number of SA data. Sensitivity represents
whether a classifier can predict SA motion without missing
the transition when a user wants to climb stairs.

Leave-one-out cross-validation was used to calculate clas-
sification accuracy and sensitivity. In other words, classifiers
were trained on eight users and applied to the remaining
user. A paired sample t-test was used to evaluate improve-
ment by data augmentation.

III. RESULTS

A. Data distribution

The collected sensor data were visualized using t-
distributed stochastic neighbor embedding (t-SNE), as
shown in Fig. 3. All data were not easily distinguished
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Fig. 3: Data visualization using t-SNE. Color represents
each user for all ambulation modes (a) and SA only (b).
SA data had large variability across users.

across users. However, the SA data from one user were
grouped, and they were separated from those of other users.

B. Evaluation of classifiers

Fig. 4 shows the evaluation of the machine learning
classifiers in terms of accuracy and sensitivity. LDA and
RF showed higher average accuracy of 98.7% and 98.9%,
respectively. However, sensitivity was significantly lower
than accuracy; the average sensitivity of LDA and RF was
only 80.7% and 77.8%, respectively. As the worst case,
SVM showed 0% sensitivity. In other words, SVM was not
able to detect SA mode.
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Fig. 4: Performance in terms of accuracy (a) and sensitivity
(b). LDA, SVM, RF, QDA, Tree, and GP showed the
average accuracy of 98.7%, 94.8%, 98.9%, 96.4%, 90.0%,
and 96.0%, and the average sensitivity of 80.7%, 0.0%,
77.8%, 46.3%, 54.0%, and 47.8%, respectively. In each bar
plot, a red line represents the median, a blue box represents
the 25th and 75th percentiles, and black lines represent the
range between minimum to maximum.

C. Evaluation of GAN-based data augmentation

For data augmentation, only LDA and RF were evalu-
ated among the machine learning classifiers because they
outperformed other classifiers.

Generally, the classifiers trained on augmented data
showed slightly better performance than those trained on
original data (Fig. 5); the performance of both LDA (p <
0.001) and RF (p = 0.008) with data augmentation were
significantly different from that without data augmentation.
In the case of LDA, average accuracy and sensitivity in-
creased from 98.7% to 98.9% and from 80.7% to 87.5%,
respectively. In the case of RF, average accuracy and sen-
sitivity increased from 98.9% to 99.0% and from 77.8% to
80.9%, respectively.

IV. DISCUSSION

This study aims to perform binary classification between
passive and active modes. Although the task is not very
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Fig. 5: Performance improvement using the GAN in terms
of accuracy (a)-(b) and sensitivity (c)-(d). Blue and or-
ange lines indicate the performance without and with data
augmentation, respectively. GAN-based augmented data im-
proved classification performance, except for the TF2, TF5,
and TF6, in terms of the accuracy of LDA.

complex, performance significantly varies according to clas-
sifiers. We believe the reason for this is that the amount of
PW and SA data is imbalanced. Additionally, each user’s
SA data is grouped and separated from others. Despite this
increased difficulty in across-user classification, GAN-based
data augmentation improved performance, particularly in
terms of sensitivity. Because of differences in user charac-
teristics, classifiers are usually trained with each user’s own
data [17]. If a GAN can generate reliable synthetic data
for new users using data from other users, the practicality
will be improved as new users will not have to spend time
collecting their own data for classifier adaptation.

Among six general machine learning classifiers, LDA
and RF outperformed. LDA and RF were good in terms
of sensitivity and accuracy, respectively. LDA would be the
best classifier for gait mode prediction because the high
computation costs of RF hinder real-time processing.

There were considerable differences in accuracy and
sensitivity (Fig. 4). Although the proposed GAN was trained
on both PW and SA data, only the synthetic PW data were
used to train the classifiers. This is because performance
decreased when synthetic SA data were used. We speculate
that SA for one user cannot be easily predicted using SA
data from different users as they were not grouped (Fig. 3).
Interestingly, despite these difficulties, LDA performed bet-
ter than nonlinear classifiers, such as QDA or GP.

The GAN did not always improve the prediction per-
formance. The LDA trained on augmented data showed
worse accuracy than that trained on original data in the case
of TF2, TF5, and TF6. During training, in lower epochs,
the GANs for these users showed better performance.
However, the performance was not maintained. We believe

the performance of GANs could be improved by adjusting
network structures or parameters, which were heuristically
chosen in this study. For example, a generator with loss
considering the Mahalanobis distance between the generated
data and distributions of the original data may improve the
performance.

The user TF8 showed poor sensitivity compared to the
other users. We performed leave-one-out cross-validation
using an LDA classifier leaving out TF8 (not shown in
the Results section). The average sensitivity of 89.9% was
not significantly different (p = 0.077) from that trained
including TF8 (89.8%, Fig. 4(b)). These results suggest
that TF8 may have different characteristics from the other
users. Therefore, further research is necessary to investigate
the influence of user characteristics, such as experience, K
level, prosthetic leg side, or weight, on data augmentation
and classification. Grouping users based on characteristics
may provide more reliable synthetic data for a user within
the group.

V. CONCLUSION

This study compared six machine learning classifiers to
predict gait mode for hybrid knee prosthesis control. LDA
and RF were the best classifiers in terms of accuracy and
sensitivity.

In addition, data augmentation using a GAN was pro-
posed to overcome the data imbalance between the amount
of data in PW and SA modes. The results indicate that data
augmentation improves performance in terms of sensitivity.

In conclusion, LDA and RF might be adequate for gait
mode prediction for a hybrid knee system; data augmen-
tation may overcome data imbalance problems between
passive and active modes.
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