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Abstract— Fatigue is a risk factor that reduces quality of
life and work efficiency, and threatens safety in a high-risk
environment. However, fatigue is not yet precisely defined and
is not a quantified concept as it relies on subjective evaluation.
The purpose of this study is to manage risks, improve mission
efficiency, and prevent accidents through the development
of machine learning and deep learning based fatigue level
classifier. Acquiring true fatigue levels to train machine learning
and deep learning fatigue classifier may play a fundamental
role. Aims of this study are to develop a bio-signal collecting
device and to establish a protocol for capturing and purifying
data for extracting the true fatigue levels accurately. The bio-
signal collection system gathered visual, thermal, and vocal
signals at the same time for one minute. The true fatigue level
of the subjects is classified through the Daily Multidimensional
Fatigue Inventory and physiological indicators related to fatigue
for screening the subjective factors out. The generated dataset
is constructed as a DB along with the true fatigue levels and
is provided to the research institutions. In conclusion, this
study proposes a research method that collects bio-signals and
extracts the true fatigue levels for training machine learning
and deep learning based fatigue level classifier to evaluate the
fatigue of healthy subjects in multi-levels.

I. INTRODUCTION

Fatigue is a critical factor that affects not only daily life
but also dangerous task, and it is very closely related to
work efficiency and the risk of casualties [1-3]. However,
the concept of fatigue has not been firmly established. It is
reasonable to evaluate fatigue by dividing it into mental fa-
tigue and task performance fatigue, which indicates whether
a person maintains an appropriate level of physical arousal
to perform a certain task. The level of fatigue is normally
measured through a self-report scale or physiological signals
measured through contact sensors [4-9]. Among them, the
Multi-dimensional Fatigue Inventory (MFI) is known as the
most reliable tool [4]. Chronic fatigue syndrome or patients
requiring treatment can be diagnosed through biochemical
indicators such as MFI and hormone levels [5, 6]. Cognitive
fatigue is measured by EEG and muscle fatigue is measured
by EMG [7-9]. However, it is not easy to predict the fatigue
level in advance when fatigue becomes a risk factor among
workers performing daily tasks. Some high-risk occupations,
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Fig. 1. System overview.

such as pilots and trailer drivers, create and use evaluation
scales suitable for their occupations [10, 11]. These evalua-
tion scales are self-report questionnaires and have limitations
in subjective evaluation, and it cannot be excluded that the
individual’s situation intervenes in the evaluation.

We aim to develop a real-time fatigue level classifier
based on artificial intelligence to overcome the limitations of
subjective fatigue level evaluation. By measuring the fatigue
level instantly in the field, it can prevent safety accidents
and improve the quality of task performance. To develop the
machine learning (ML) and deep learning (DL) fatigue level
classifiers which utilize visual, thermal image, and vocal
signals, the ground truth of fatigue level should be provided
with training data. Thus, the process of extracting the true
value of the fatigue level is the most important part. However,
it has not been set up yet because certain indicators do not
represent individual fatigue levels.

In this paper, the fatigue level of the subjects is classified
with the proposed Daily Multidimensional Fatigue Inventory
(DMFI) and four physiological indicators related to fatigue.
Physiological indicators include reaction time and success
rate of Psychomotor Vigilance Test (PVT) as an indicator
of acute fatigue, blood lactate level as an indicator of
physical fatigue, salivary C-Reactive Protein (CRP) level
as an indicator of cumulative fatigue, and salivary cortisol
level as an indicator of mental fatigue. In order to determine
the true fatigue level, the DMFI score is first used to
screen for discrepancies between subjective fatigue levels
and evaluated fatigue levels. Furthermore, training data are
filtered out when physiological values exceed the normal
range. The main contribution of this paper is the development
of a data collection system for training classifiers that can
measure daily integrated fatigue in a short time via remote
sensors for healthy general populations. The experimental
procedures involving human subjects described in this paper
were approved by the Institutional Review Board(ASMC-21-
IRB-005).

This work is licensed under a Creative Commons Attribution 3.0 License. 
For more information, see http://creativecommons.org/licenses/by/3.0/
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II. SYSTEM CONFIGURATION

The purpose of this study is to develop a system that can
determine the level of fatigue using non-contact bio-signals
as shown in Fig. 1. In the daily working environment, the
user’s bio-signals, optical, voice, and thermal image signals,
are collected from a short distance of around 1m using a
portable device. The acquired biometric data is transmitted
to the main server through wireless communication, and the
main server is equipped with ML and DL-based classifiers.
The fatigue level analyzed in real-time is fed back to the
collecting device and delivered to the user.

Since building learning data is essential for developing
such a system, the data collector is proposed at first. For
the convenience of data collection, we propose a device
that is mobile and easy to use, and can simultaneously
collect various bio-signals that can be obtained from humans
to improve the reliability of data. In order to increase
mobility, it is lightweight and can be operated with a built-
in battery, and the collector body and cradle are designed as
an assembly type to reduce the volume. In addition, a touch
screen is installed to improve usability. All data in the form
of optical images, thermal images, and voices are collected
simultaneously to shorten the collection time of the subjects
as much as possible to increase data reliability. In addition,
the visual angles of optical images and thermal images are
almost similar, facilitating information convergence between
data. Voice can be used with mouth movements in synchro-
nization with optical images. When the collection process is
finished, the data is automatically transmitted to the server
when the collector is connected to the wireless internet to
back up the data.

Table 1 shows the list and specifications of hardware com-
ponent items used in manufacturing to achieve the required
performance. The data collection system proposed in this
paper is based on Raspberry Pi 4 model B, single board
computer. This is because the size is small, the price is low,
and the performance is sufficient to achieve the purpose of
the system while having various interfaces for connecting
external hardware. Specifically, it is equipped with a quad-
core 1.5GHz processor, has 8GB of RAM memory, and wire-
less communication is possible with two channels of Wi-Fi,
2.4GHz and 5GHz. A FLIR Lepton 3.5 is used as the thermal

TABLE I
HARDWARE SPECIFICATIONS

Components Specifications

Processor
(Raspberry Pi 4B)

Quad core Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz, 8GB LPDDR4-3200 SDRAM

2.4GHz and 5GHz IEEE 802.11ac
Thermal Camera

(Lepton 3.5)
160×120 resolution, 8.7Hz effective frame rate,

-10◦ to +140◦C (high gain mode)
Optical Camera

(Pi Cam v2) 1080p 30fps, 720p 60fps video record

Microphone
(Mini-USB Mic)

Condenser type,
-47dB ± 4dB sensitivity, ≤ 2.2kΩ impedance

Display
(7" Touchscreen)

7" 800×480 pixels,
10 finger capacitive touch

Power Li-ion battery 2,600mAh

Fig. 2. Data collection device.

Fig. 3. Software workflow.

imaging camera, which has a thermal image resolution of
160×120 and can shoot at 8.7fps. The temperature range that
can be photographed is -10◦ to 140◦C. The optical camera
used Pi Cam v2, which can shoot at up to 60fps at the
resolution of 1280×720. A small USB microphone is used
as the microphone. A touch screen monitor is applied for the
user’s data input/output. A 2,600mAh lithium-ion battery is
installed as a power supply battery to increase mobility so
that it can operate without power connection for more than
an hour.

Fig. 2 is the completed data collection device. The body
is produced by 3D printing to make the finish neat and
improve the completeness. In order to minimize the size of
the body, the width is adjusted to the size of the monitor,
and the length is fit to the camera module installed inside
the monitor. For matching the viewing angles of optical and
thermal images, two cameras are placed as close as possible,
and the camera is installed right above the screen for the
convenience of the subject when taking images. The USB
port for the microphone is placed upward, and it is possible



to attach and detach a tripod to increase mobility. When
collecting data, the height of the tripod can be adjusted so
that the camera shooting angle is horizontal, so even if the
subjects are different, almost similar shooting angles can be
made. The total weight is 819g, so it is convenient to move.

Fig. 3 shows the software workflow of the biological signal
collection system. When the data collection software starts, it
waits for 1) user login to distinguish the bio-signal collection
target. If login is successful using the user information in
the DB, 2) user responses to DMFI, 3) records video and
thermal image, 4) PVT are performed, 5) inputs lactate level
measured using a separate tool, 6) makes a final check on
the screen where you can verify the data you have just
collected at once. Finally, 7) The collection process ends
with the screen where you can check the data collection
progress report for the last 5 days by user in a chart, and all
information is saved. The above data is classified by login ID
and is effectively managed even if the data is collected from
multiple collection devices at the same time and transmitted
to the DB.

III. TOOLS FOR CLASSIFYING FATIGUE LEVELS

Fatigue is divided into four categories, acute fatigue,
cumulative fatigue, physical fatigue, and mental fatigue, and
the DMFI includes all four categories of fatigue [12]. The
overall fatigue level is calculated through the DMFI. In
addition, physiological indicators corresponding to subdi-
vided fatigue are extracted. The physiological indicator of
acute fatigue is PVT, the physiological indicator of phys-
ical fatigue is blood lactate, the physiological indicator of
cumulative fatigue is salivary CRP, and the physiological
indicator of mental fatigue is salivary Cortisol. Although the
physiological indicators representing fatigue in each category
are not quantitative indicators for grading fatigue, bias in
subjective evaluation can be eliminated through the reversal
of subjective reports and levels of physiological indicators.
Table II shows the physiological indicators associated with
detailed fatigue.

A. Daily Multidimensional Fatigue Inventory

The multidimensional fatigue scale used as a clinical scale
is a tool to measure the level of accumulated fatigue, and the
risk management scale can be used as a fatigue scale that
can be measured daily [13]. By fusing these two scales, we
propose the DMFI that can differentiate the fatigue level even
if repeated every day. The DMFI is a fatigue scale consisting
of 13 questions: 2 questions for acute fatigue, 3 questions
for cumulative fatigue, 3 questions for physical fatigue, 4
questions for mental fatigue, and 1 question for activity level
for fatigue relaxation. Fatigue level is divided into 5 levels
according to DMFI total scores and level 1 represents low-
fatigue and high-arousal. When evaluated fatigue is level 1 to
level 3 and physiological indicators representing subdivided
fatigue are in the abnormal range, the data is classified as
ND (Not Determined) and is not used for learning.

TABLE II
TOOLS FOR CLASSIFYING FATIGUE LEVELS

Tools Target of fatigue Method
DMFI Total fatigue Questionnaire
PVT Acute fatigue Behavioral test

Lactate Physical fatigue Micro blood test
Cortisol Mental fatigue Immunoassay

CRP Chronic fatigue Immunoassay

B. Psychomotor Vigilance Test

PVT is one of the tools that can check an individual’s
level of arousal on the spot in real-time [14]. PVT is a
tool for measuring the speed of response to visual stimuli.
It quantifies the level of sustained attention and arousal
as reaction time, as well as erroneous responses such as
missing without responding or responding in the absence
of stimulation. Sustained-attention and sleepiness correlated
with decreased alertness, slower problem-solving speed, de-
creased sensorimotor function, and increased false responses
to stimuli. That is, it is suitable as a tool for measuring acute
fatigue related to task performance [15]. PVT has a learning
effect up to the first 10 times, but if there is a reversal
phenomenon between the subjective fatigue level and the
reaction time thereafter, the report of the subjective fatigue
level is excluded.

C. Blood Lactate

Lactic acid has been known as a simple fatigue substance
or waste product produced as a result of lack of oxygen.
However, lactic acid not only mediates between glycolysis
and oxidative metabolism, but also serves as an important
metabolite that adequately supplies energy during rest and
exercise when energy demands increase [16]. In addition,
lactic acid is a precursor of gluconeogenesis and serves as
a lactate shuttle that indirectly supplies glucose to damaged
tissues [17]. In the end, it is found that lactic acid functions
in more than just anaerobic exercise as a source of fatigue,
but lactic acid remains a major metabolite that responds to
exercise stimulus accordingly. Lactic acid can be an indicator
of fatigue from physical activity, and lactate in an abnormal
range can be an indicator of excessive physical fatigue.

D. Salivary Cortisol

Cortisol is both an arousal hormone and a stress hormone,
the main glucocorticoid secreted by the adrenal cortex [18].
Cortisol production has a circadian rhythm, with levels
peaking about an hour after waking and falling to their lowest
levels at night [19]. Levels rise independently of circadian
rhythms in response to stress. Chronic stress increases the
level of cortisol during the day and night, but PTSD and
chronic fatigue syndrome can blunt the cortisol response even
in the morning [20]. Cortisol levels at both extremes can be
utilized to ensure the reliability of mental fatigue levels in
subjective reports of fatigue.



E. Salivary C - Reactive Protein

CRP is one of the acute-phase inflammatory proteins and
is known as a physiological marker of the level of inflamma-
tion. CRP is primarily related to innate immunity, and levels
are elevated in inflammation, tissue damage, infection, and
sleep disorders [21]. CRP has diagnostic value in systemic
inflammation in the body [22]. Circulating CRP levels in
humans are normally very low but increase up to hundreds of
folds during an acute inflammatory response. Accumulation
of fatigue and lack of sleep in the absence of certain diseases
can cause CRP levels to rise. If the subjective fatigue level is
low but the CRP level is in the abnormal range, the subjective
fatigue level data is treated as unsuitable as training data.

IV. DB CONSTRUCTION AND APPLICATION

Data from the collector is transmitted to the DB server
through wireless communication, and researchers access the
DB to download and utilize the data. User information
and collected data are managed by installing MariaDB 10.3
version on the collector. The fields and data types of the
DB data table are summarized in Table III. In the first
column, value in the parentheses indicates the data range. For
example, the subjective condition value is a value between 1
and 100 points, and the subjective condition step has a value
between 1 and 5 steps. The last column is an example of data
for each field. There are a total of two PVT results. One is
the success rate, which has a value of 0 to 1, and the response
time has a value in seconds. The video and thermal image
data are stored in the form of a BLOB because the subject’s
data must be stored for about 1 minute. In the case of video
data, it is stored in the form of a TS (Transport Stream)
file, and the thermal image data is stored in the form of a
compressed collection file of image files with time data and
minimum/maximum temperature recorded in the file name.
The final fatigue level is determined on the true fatigue level
classification.

About 5,000 sets have been collected so far. When creating
data, the same person generates more than 40 sets of data. To
prevent non-uniformity of data during NN (Neural Network)
training, each person records at least 5 dataset for each
fatigue level from 1 to 5. The collected data is re-evaluated

TABLE III
DATABASE STRUCTURE

Field Type Example
User ID varchar 2401

Machine ID varchar 100000000542e564
Datetime (yymmddhhmm) int 2208061540

Subjective condition value (1–100) int 75
Subjective condition step (1–5) int 2

DMFI answers (1–5) × 13 int 3
Thermal images longblob zip file

Video longblob TS file
PVT result (rate) float 0.9

PVT response time (sec) float 1.278
Check for bio-data (0 or 1) int 1

Lactate value float 7.2
Final fatigue level (1–5 or ND) varchar 2

using the tools suggested in section III to provide a true value
of fatigue and approximately 15% of them were excluded.
A classifier is trained based on thermal images, optical
images, and voice signals from the dataset that contains
the true level of fatigue. At present, the real-time fatigue
level classifier is accurate to 70% to classify fatigue into five
levels. Furthermore, it shows that fatigue level classifiers get
more accurate as data accumulates.

V. CONCLUSIONS

This paper deals the technical details of establishing a
data acquisition system and a true fatigue value extraction
procedure to train ML/DL-based fatigue level classifier that
utilizes bio-signals. Both evaluating the true fatigue levels
and acquiring sufficient training data are critical to improve
the performance of the fatigue level classifier. The pro-
posed data acquisition system collects various bio-signals
simultaneously. The final fatigue levels are determined by
comparing and analyzing all the physiological indicators.
When the subjective fatigue level reported by the subject
and the fatigue level classified by the fatigue scale score
do not match, those data are excluded from the training.
Therefore, the proposed procedure minimizes subjective bias
in subjective fatigue evaluations through increased reliability
and accuracy at determining the universal true fatigue level.
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