
  

  

Abstract— Recently, electromyography (EMG) has been 

established as a promising new biometric trait that provides a 

unique dual mode security: biometrics and knowledge. For 

authentication that is used daily and long-term by general 

consumers, the wrist is a suitable location, which could be easily 

integrated into the existing form of smartwatches and fitness 

trackers. However, current EMG-based biometrics still follow 

the historical path of powered prosthetics research, where EMG 

signals were usually recorded from forearm positions. 

Moreover, the robustness of EMG processing algorithms across 

multiple days is still an open problem that needs to be addressed 

before for long-term reliable use. This study intends to 

investigate the difference in authentication performance 

between wrist and forearm EMG signals, in a within-day and 

two cross-day analyses. Our open dataset (GRABMyo dataset) 

was used to examine this difference, which contains forearm and 

wrist EMG data collected from 43 participants over three 

different days with long separation (Days 1, 8, and 29). The 

results showed wrist EMG signals led to at least comparable with 

forearm EMG signals in within-day Equal-error rate (EER). In 

cross-day analysis, the EER of the wrist EMG signals was higher 

than that of forearm signals. In general, the low median EER 

(<0.1) of wrist EMG in cumulative cross-day analysis 

demonstrates the promise of using wrist EMG signals for 

authentication in long-term applications.  

I. INTRODUCTION 

Biometrics has become an integral part of current 
authentication systems to verify an individual’s identity. 
Conventional biometrics, such as fingerprints and facial scans 
in smartphones and laptops, have been widely used in our daily 
lives. However, with the development of technology, leakage, 
and artificial regeneration (also termed spoof) of these traits is 
being easier due to poor hidden and liveness nature, resulting 
in an increased risk of identity theft. Recently novel biometrics 
based on bio-signals, such as the electrocardiogram (ECG) and 
electroencephalogram (EEG) are potentially more resilient to 
spoofing than the conventional biometric traits [1].  

Compared with EEG and ECG, electrocardiogram (EMG), 
another typical bio-signal, has received relatively little 
attention for its application in biometrics. EMG has been 
traditionally used in gesture recognition-based research. In 
such research, high classification accuracy could be reached 
when training and test data come from the same individual. 
However poor cross-user transference performance has been 
one of the obstacles to commercializing EMG control systems 
[2]. This suggests that inherent individual difference exists in 
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EMG signals, which is precisely what the biometric trait needs. 
Hence, EMG has a dual-property: individual difference 
(biometrics) and gesture recognition (knowledge), providing it 
a unique advantage as a biometric trait. On the biometrics level, 
it requires liveness detection and is more covert like EEG and 
ECG, resulting in less likelihood to be compromised and 
spoofed than the traditional traits. On the knowledge level, it 
provides additional security using customized gestures as 
passcodes, which is not possible with EEG and ECG. Multiple 
recent studies have shown EMG can be an accurate biometric 
trait [3-6]. In [6], it has demonstrated the performance of EMG 
under the same gesture is comparable to EEG and ECG, and is 
further improved by gesture encoding. 

There are generally two common biometric modes: 
authentication and identification. In the current study, we 
focus on the authentication mode, where the biometric system 
grants or rejects the access request of the presenting user 
(claimant) by comparing the presented biometric data to the 
template stored in the database. Some of the studies have 
reported a high biometric authentication performance (>95%) 
[5-10]. In these studies, EMG signals were majorly collected 
from forearm muscles. Traditionally, EMG processing has 
been largely motivated by the application of upper limb 
prosthesis control, so EMG recording was focused on the 
forearm muscles. However, in daily life, compared with 
wearing a band around the forearm, general consumers are 
more accustomed to wrist-worn devices, which are more 
comfortable and unobtrusive like a watch. Recently, a study 
reported that wrist EMG signals have comparable performance 
with forearm EMG signals for hand gesture recognition [11]. 
Furthermore, [11] and other studies [12, 13] showed that wrist 
EMG signals have comparable signal quality metrics with 
forearm signals at least. However, to the best of our knowledge, 
the difference in authentication performance between wrist 
and forearm EMG signals remains to be compared. 

For long-term reliable use of EMG-based applications in 
the real world, the natural variation of EMG over time is a 
problem that has to be considered. [14] showed that EMG 
signal temporal variation greatly degrades the classification 
performance of forearm-based gesture recognition. Within the 
authentication literature, several recent studies have 
investigated the multi-day performance based on EMG signals 
[3, 7, 15]. A multi-day analysis involving training data and 
testing data from different days was employed to test the 
robustness of the EMG-based biometrics in practical scenarios. 
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Among these studies, [15] utilized a four-day data collection 
protocol with a small subject pool (5 subjects). [3, 7] had a 
larger number (20 and 22) of subjects, but the data were from 
only two days. Hence, a large subject pool and multi-day 
recording are warranted. Moreover, the vast majority of efforts 
have focused on forearm EMG signals, and it is currently 
unknown how cross-day effects may differ for wrist EMG-
based authentication. 

Therefore, the first purpose of this work is to compare the 
biometric performance using wrist and forearm EMG signals 
for authentication based on a large subject pool of up to 43 
subjects. The second purpose is to explore the difference in the 
multi-day biometric authentication performance of wrist and 
forearm EMG using three different timeline-based analyses 
involving training and testing data from the same/different 
days. In this study, a direct comparison between the 
authentication performance of concurrently collected wrist and 
forearm signals is presented. 

II. METHODS 

A. GRABMyo Dataset 

A previously collected EMG dataset by us, named Gesture 
Recognition and Biometrics electroMyogram (GRABMyo) 
Dataset, was used in this study. The data acquisition 
experiment protocol is briefly introduced as follows, and 
please refer to [13] for a more detailed description. 43 healthy 
participants (26.35 ± 2.89 years, 23 M, 20 F) participated in 
the experiment. EMG data were collected over three different 
days (Days 1, 8, and 29) from forearm and wrist muscles using 
monopolar EMG electrodes (AM-N00S/E, Ambu, Denmark). 
The 8 and 6 electrodes were placed evenly around the forearm 
and wrist respectively, as shown in Fig.1. For each 
experimental session, the participants were instructed to 
perform the same 16 static hand/wrist gestures 7 times. It's 
worth noting that the dataset is the largest EMG dataset in 
terms of the total number of recording sessions (43 subjects x 
3 days = 129 recording sessions). 

B. EMG Signal Processing 

For the forearm and wrist rings, initially, the monopolar 
EMG signals were processed by common averaging. The 
processed signals were then segmented into 200ms windows 
with a 150 ms overlap. Then the feature was extracted for each 
window using the frequency division technique (FDT) [16], 
which calculates the magnitude of L frequency bands. For the 
ith band, let fi,1, and fi,ni denote the frequency values of the two 
endpoints. As such, for each window, the ith feature is 
calculated as 

𝐹𝐷𝑇𝑖 =  𝐹 [∑ |𝑋 (𝑓
𝑖,𝑗

)|
𝑛𝑖

𝑗=1 ], i=1,2,…L, (1) 

where X(·) denotes the magnitude of the FFT spectrum, and 
F[·] denotes a logarithm operator (non-linear transformation). 
In the current study, the whole EMG frequency band of EMG 
(20-450 Hz) was subdivided into six equal-width frequency 
bands: 20-92, 92-163, 163-235, 235-307, 307-378, and 378-
450 Hz. Therefore, the feature vector extracted from each 
window comprises 48 and 36 FDT features from the forearm 
and wrist ring, respectively. 

The matching score was used commonly to assess access 
granted or denied [6, 9]. For a given feature vector sample p, 

which is the input from a specific user (the claimant) while 
performing a specific gesture, its matching score, Si,j, with the 
ith gesture and the jth user, was defined as the Mahalanobis 
distance between the sample and the class centroid: 

𝑆𝑖,𝑗(𝑝) = √(𝑝 − μ𝑖,𝑗)
⊤

Σ𝑖,𝑗
−1(𝑝 − μ𝑖,𝑗), (2) 

where 𝜇𝑖,𝑗  and Σ𝑖,𝑗  is the centroid and covariance matrix for 

the specific gesture and user class, respectively. Both 𝜇𝑖,𝑗 and 

Σ𝑖,𝑗 were estimated from the enrollment data. 

C. Within-day and cross-day analysis 

In the current study, data was collected from each user over 
three different days comprising seven trials each day and 16 
gestures in each trial. The biometric authentication 
performance evaluation involved a within-day (WD) analysis 
and two separate cross-day analyses, single cross-day (SCD) 
and cumulative cross-day (CCD). 

For the WD analysis, six trials of the gestures in each day 
were used as enrollment data (training), and the remaining one 
trial of that day was used as claimant data (testing). For the 
SCD analysis, the data from six trials in one day were used as 
the enrollment data, and one trial data from each of the 
remaining two days was used as the claimant data. For the 
CCD analysis, the data from six trials in two of the three days 
were used as the enrollment data, and one trial data from the 
remaining day was used as the claimant data. The graphical 
representation of the WD, SCD, and CCD analysis is provided 
in Fig 2.  

Seven-fold cross-validation was implemented by varying 
the enrollment and claimant trials from the specific days for 
both the WD and CCD analysis, and a between-day seven-fold 
cross-validation was implemented for SCD analysis. Each 
cross-validation was repeated for each of the three days and 
the average authentication performance was reported. 

D. Performance Evaluation 

The equal error rate (EER) is a common-used 
authentication metric for comparing the performance of 
different biometric traits. The EER is the point on the detection 
error tradeoff curve (DEC) where the false acceptance rate 
(FAR) is equal to the false rejection rate (FRR). The EER 
value is lower, the performance is better. For an accurate 
assessment of the biometric authentication capacity of the 

Fig. 1 Positions of the eight surface electrodes on the forearm and 

six electrodes on the wrist (dorsal view). 



  

EMG biometrics, two common authentication scenarios were 
investigated: 1) Normal Test: the correct code was only known 
to the genuine user, while the impostor had no knowledge of 
the code and presented a random different from the correct 
code; 2) Leaked Test: the correct code for the genuine user was 
compromised, and the impostor presented the correct code by 
performing the corresponding gestures. Thus, in the leaked 
test, there is no knowledge-based protection, only the 
individual difference in bio-signals does work. 

E. Statistical Analysis 

The study aimed to investigate the WD and cross-day 
authentication performance of the forearm and wrist EMG 
biometric system. For each of the three analysis scenarios, i.e., 
WD, SCD, and CCD, a repeated measures ANOVA was 
performed on the EER of the two test scenarios (normal and 
leaked) to determine if there was any significant effect of 
electrode positions (two levels, i.e., forearm-position and 
wrist-position). And for each electrode position, a repeated 
measures ANOVA was also performed on the EER to 
determine if there was any significant effect of the three 
analysis scenarios. All statistical tests were performed using 
RStudio 1.0. 136 (RStudio, Boston, MA). 

III. RESULTS 

Fig.3 shows the EER distribution in normal and leaked test 
scenarios. In each test scenario, the electrode positions 
(forearm and wrist) and the three timeline-based analyses 
(WD, SCD, and CCD) were considered as factors. As expected 
and evident from Fig.3, the EER for WD analysis was 
significantly lower (p<0.01) than the EER of SCD and CCD 
analysis, for both the forearm and the wrist position. Further, 
the EER of the CCD analysis was significantly lower than the 
SCD analysis (p<0.01). The effect of the two electrode 
positions is presented below for each of the three timeline-
based analyses. 

For the WD analysis in the normal test scenario, the wrist 
position had a median EER of 0.028 (Q1=0.018, Q3=0.038) 
which was similar (p>0.05) to the forearm position (median 
EER=0.026, Q1=0.018, Q3=0.034). For the leaked test 
scenario, the wrist position had a median EER of 0.04 
(Q1=0.026, Q3=0.052)  which was significantly lower 

(p<0.01) than the forearm position (median EER=0.046, 
Q1=0.037, Q3=0.058). 

While comparing the cross-day analyses (SCD and CCD), 
the median EER of the CCD analysis were significantly lower 
than the median EER for the SCD analysis (p<0.01) for all 
electrode positions and test scenarios. Specifically, for the 
CCD analysis in a normal test scenario, the median EER for 
wrist position was 0.09 (Q1=0.069, Q3=0.136), which was 
significantly higher (p<0.01) than the forearm (median 
EER=0.069, Q1=0.056, Q3=0.113). For the leaked test 
scenario, the wrist-position resulted in a median EER of 0.145 
(Q1=0.101, Q3=0.209) which was not significantly different 
(p>0.05) from the forearm-position (median EER=0.126, 
Q1=0.103, Q3=0.176). For the SCD analysis, there were 
similar comparisons between forearm and wrist positions with 

Fig. 2 (From left to right) Within-day, single cross-day and cumulative cross-day analysis. The corresponding training (enrolment) data for each 

analysis are represented in green; the testing (claimant) data are represented in dark green (for within-day analysis) and blue (for cross-day analysis). 

Fig. 3 Biometric authentication performance for the Normal and 

Leaked Test scenario. Each boxplot represents the interquartile range 

(IQR, 25th – 75th percentile) and the center horizontal line represents the 

median EER value. The whiskers (solid vertical lines) represent the 
datapoints within the 1.5*IQR threshold. The outliers (solid black 

circles) are those with EER greater than the 1.5*IQR threshold. 



  

the CCD analysis. It's worth noting that wrist position still kept 
a high authentication performance for CCD, in which the 
median EER was less than 0.1. 

IV. DISCUSSION 

The first purpose of this study was to examine the 
authentication performance comparison between EMG 
recorded from the wrist and forearm. The results showed that 
in the WD analysis, wrist EMG signals had comparable 
authentication performance with forearm signals in the normal 
test, and wrist EMG signals even had significantly better in the 
leaked test. This suggests that wrist EMG signals are as 
desirable for biometric authentication as forearm EMG 
signals. Combined with the findings of the study [6], wrist 
EMG has at least a similar authentication performance to EEG 
and ECG.  

Notably, in the leaked test, wrist EMG signals resulted in 
a comparable authentication performance with forearm signals 
even for cross-day analyses. Thus, results from the leaked test 
could be proof that the wrist EMG signal has good individual 
differences suitable for biometric traits. In the normal test, 
forearm EMG signals provided higher biometric performance 
and this difference is significant, especially for cross-day 
analysis. However previous article [11] showed that wrist 
EMG signals provided significantly higher classification 
performance for all finger gestures and comparable results for 
wrist gestures. One possible reason for the inconsistency is the 
difference in gestures that all single-finger extensions were 
covered in [11]. In the anatomy of the upper limb, the finger-
controlling muscles are mostly at the wrist level and EMG 
signals related to wrist gestures are still likely to be recorded 
at the wrist level because proximal forearm muscles extend 
down to the wrist. Furthermore, it is worth noting that all EER 
results in the normal test scenario were significantly better 
(p<0.01) than the corresponding results in the leaked test 
scenario. This observation is consistent with the fact that only 
the inherent EMG signals difference could be exploited for 
authentication in the leaked test scenario due to the 
compromise of knowledge level security (password gesture).   

The second purpose of this study was to compare the 
authentication performance between wrist and forearm EMG 
at multi-day applications. First, compared with the WD 
analysis, the decrease in wrist EMG signals authentication 
performance was more than that of forearm signals in both 
cross-day analyses. This indicates that wrist EMG signals are 
more sensitive to non-stationary factors due to cross-day than 
forearm signals. Further effort is necessary to improve the 
robustness of wrist EMG signals over cross-day. Moreover, a 
significant increase in EER in each cross-day analysis was 
observed compared to the WD analysis. This is expected as the 
EMG signals are affected by non-stationary factors such as 
electrode shift and changes in skin conditions. While 
comparing the two cross-day analysis results, the CCD EER 
was significantly lower than the SCD EER for both two test 
scenarios. This suggests that EMG data from different days do 
have enough homogenous information such that training with 
data from multiple days improves the biometric authentication 
performance. It's worth noting that the CCD performance for 
wrist position is median EER = 0.09, which is within the EER 
range (10-4 - 0.20) of other biometric traits such as bio-signals, 
fingerprint, keystroke, etc., reviewed by previous studies [1]. 

In conclusion, wrist EMG signals are promising as reliable 
biometric traits used in long-term authentication applications.   
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