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Abstract— We propose a novel framework to estimate inten-
sive care unit patients’ health risk continuously with anomaly-
encoded patient data. This framework consists of two modules.
In the first module, we use Gaussian process models to learn
change trend and day-night circulation in temporal patient data
and annotate abnormal data. Such models provide dynamically
adaptable bedside patient monitoring instead of conventional
threshold-based monitoring. In the second module, we use
the abnormal data together with the learned Gaussian models
to estimate patients’ risk level by predicting their in-hospital
mortality and remaining length of stay in ICU ward. We show
that prediction models with anomaly-encoded data have better
performance than those with raw patient measurements, and
they are comparable with state-of-art prediction models.

I. INTRODUCTION

Intensive care unit (ICU) patients face an increased risk of
clinical deterioration [1], [2]. A continuous and close mon-
itoring of inpatients is therefore crucial. Currently, bedside
patient monitoring devices are widely used in ICU wards to
monitor patients’ vital signs and trigger an alarm when a vital
sign exceeds the pre-set thresholds. As stated in our previous
research [3], vital signs have varying normal ranges from
person to person and response differently to ongoing activi-
ties. Such rule-based monitoring method yields high rate of
false alarms that interrupts nursing staff [4]. Beside raw data
monitoring, multi-parameter scoring methods, e.g., National
Early Warning System (NEWS), Modified Early Warning
System (MEWS), and Acute Physiology And Chronic Health
Evaluation (APACHE), are widely applied to estimate pa-
tient’s deterioration risk according to a set of criteria chosen
by medical experts. These methods are typically criticized by
their lack of patient-specificity, empirically chosen threshold
values, and disregarding temporal trends and the history of
vital-sign values preceding the current set of observed values
[5].

In recent decades, machine learning (ML) methods have
been proposed to develop personalized patient monitor-
ing systems that comprehensively estimate patients’ health
condition with demographics information and physiological
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measurements. However, characteristics of medical data,
e.g., irregularly-spaced time-series measurements and high
missing-value proportion, are still problematic for many ML
models. Data interpolation, imputation or feature extraction
are usually required before applying any learning model.
Gaussian process (GP) is able to handle these problems due
to its probabilistic framework and imputes the missing values
with uncertainty estimation [6], [7]. Another advantage of GP
is that prior knowledge and constraints can be added to the
model by selecting, combining and tuning the kernels [8].
This will allow medical staff to feed their expert knowledge
to the model and have more control of the learning process.
Works are done to apply GP models to detect anomaly in
vital signs [5], [6], predict clinical deterioration [9], [10], and
combine them with neural networks for further classification
tasks [11], [12].

Current works on anomaly detection for bedside patient
data mainly focus on learning personalized trends and finding
abnormal sudden changes in the signals. On this basis,
we investigate day-night circulation as another criteria to
model normal ranges of physiological data and use detected
abnormal data as input for patient risk estimation. The
following are the main contributions of this work:

• We demonstrate an interpretable personalized anomaly
detection for physiological measurements by learning
long-term trend and day-night seasonality with GP
model.

• We design an anomaly-encoding method using results
from the learned Gaussian models for further analysis
tasks.

• We show that length-of-stay (LOS) and mortality pre-
diction models using anomaly-encoded data as input
have better performance than those using raw data as
input.

II. METHOD

A. Gaussian Process Modelling

Gaussian process describes the distribution of an arbitrary
function, defined as

f(x) ∼ GP(µ(x), k(x, x′)), (1)

where µ(x) is the mean function,

µ(x) = E[f(x)] (2)

and k(x, x′) is the kernel, i.e., the covariance function.

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (3)
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There are different expressions of kernels to model char-
acteristics of a function, e.g., linearity, smoothness and
periodicity. In this work, we choose a radial basis function
(RBF) kernel and a periodic kernel to model the long-term
trend and day-night seasonality in patient physiological data.
The RBF kernel is defined as

kRBF (x, x
′) = σ2exp

(
− (x− x′)2

2l2

)
, (4)

where σ2 is the variance, and l is the length scale. The larger
the l, the smoother the approximated function. The periodic
kernel is defined as

kperiodic(x, x
′) = σ2exp

(
−

sin( πT (x− x′))2

2l2

)
, (5)

where T is the period parameter.

B. Anomaly Encoding

After fitting the GP model to patient data, the mean and
covariance functions are optimized to describe distribution
of each individual physiological signal. We define outliers
as measurements outside the 95% confidence interval (CI)
of the Gaussian model. The raw physiological time-series
data is then encoded according to Alg. 1, where xi,t is
a measurement at time t of the i-th signal, µi,t is the
distribution mean, bui,t and bli,t are the upper and lower
boundary of the model’s 95% CI, and trendi,t is the change
trend of µi,t:

trendi,t = µi,t+1 − µi,t. (6)

This anomaly encoding contains information about the ex-
pected normal interval (mean and confidence interval) of
individual physiological signal. Measurements within in this
normal interval are removed from the data representation,
where as abnormal measurements are described as their
difference to the expected values (µi,t).

Algorithm 1: Anomaly encoding

Input: xi,t, µi,t, trendi,t, bui,t, bli,t ∈ R1

Output: ei,t ∈ R6

1 ei,t = [µi,t, bui,t − bli,t, 0, 0, 0, 0]
2 if xi,t < bli,t then
3 if trendi,t < 0 then
4 e2,t = xi,t - µi,t

5 else
6 e3,t = xi,t - µi,t

7 else if xi,t > bui,t then
8 if trendi,t < 0 then
9 e4,t = xi,t - µi,t

10 else
11 e5,t = xi,t - µi,t

Fig. 1: Patient risk estimation framework.

C. Patient Risk Estimation Model

In this work, we estimate patients’ risk by predicting
their length of stay in ICU ward and in-hospital mortality.
Random Forest (RF) and XGBoost are widely applied in
clinical prediction tasks and achieve satisfying performance.
However, instead of using raw time-series data, these two
models usually require feature engineering to obtain low-
dimensional input [13], [14]. Therefore, we implemented a
two-layer Convolutional Neural Network (CNN) that works
with raw and encoded data (see Fig. 1). Model configurations
for RF, XGBoost and CNN are summarized in Tab. I.
The model input consists of static patient information of
dimension DS and temporally aligned physiological signals
of dimension DT × T , where DT is the data dimension
and T is the length of temporal sequences. In the first
CNN layer, we extract feature for each time-series signal
separately and compress it in the temporal dimension by
applying a convolutional layer to each input signal. In the
second layer, we learn correlation between all time-series
signals by convolving the output of the first layer with one
single convolutional layer. The output of the second CNN
layer is concatenated with static patient information and fed
into a fully connected layer to output the prediction result.

III. EXPERIMENTS

A. Data Preprocessing

Experiments in this paper are conducted with MIMIC IV
dataset [15]. According to our cohort selection pipeline (see
Fig. 2), we end up with 33778 unique ICU admissions and
27952 unique patient subjects. The number of ICU survivors
is 24483 (87.6%). We use the entire cohort for mortality
prediction models and the survivor cohort for LOS prediction
models. For each prediction task, the corresponding cohort
is split into a training cohort (80%) and a test cohort (20%),
where a 5-fold cross validation is applied in the former for
model training (input data statistics see Tab. II).

Each data sample contains patient information and time-
series measurements of patient’s physiology (see Tab. III).
Time-series data are temporally aligned to a sampling fre-
quency of 1 measurement per hour. Then we slice the aligned
data sample into non-overlapping 48-hour segments as input
of prediction models. Numeric data is normalized according
to Eq. 7, whereas categorical data is represented by one-hot
encoding.

xnormalized(i, t) =
x(i, t)− x̄i

σi
(7)



TABLE I: Model Configuration.
Random Forest and XGBoost models are implemented with XGBoost

library. CNN models are implemented with Pytorch library. Input
dimension DT of CNN is 38 for raw data and 228 for encoded data.

Model Parameter

Random Forest learning_rate = 1
max_depth = 6
number_of_trees = 5000
L2_regularization = 10−5

objective_function = ’binary:logistic’
tree_method = ’gpu_hist’
subsample = 0.8
colsample_bynode =0.8

XGBoost learning_rate = 0.3
max_depth = 6
number_of_trees = 5000
objective_function = ’binary:logistic’
tree_method = ’gpu_hist’

CNN input_dimension = DT

cnn_num_layer = 2
cnn_num_hidden_neuron = [380, 256]
cnn_kernel_size = [3, 3]
cnn_stride_size = [1, 1]
cnn_group_size = [38, 1]
num_fc_layer = 1
num_hidden_neuron_fc = 512
droup_out_fc = 0.5
learning_rate = 10−5

batch_size = 64

TABLE II: Input data statistics.

Mortality prediction LOS prediction
Number of subjects: 27952 Number of subjects: 24483
train validation test train validation test
17884 4472 5596 15648 3912 4923
Number of samples: 95868 Number of samples: 78127
train validation test train validation test
61371 15546 18951 49704 12723 15700

where x̄i and σi are the mean and standard deviation of the
i-th signal of train cohort. After normalization, we keep the
raw data and compute anomaly-encoded representation for
numeric time-series data.

Fig. 2: Cohort selection pipeline.

B. GP-based Anomaly Detection

In this section, we demonstrate the GP modelling for
patient physiological data. We first remove sudden change
peaks in the raw data, which can interfere with fitting process

of GP model (see red triangle markers in Fig. 3). The kernel
of our model is a combination of a RBF kernel (see Eq.
4) and a periodic kernel (see Eq. 5). To extract the long-
term trend and day-night circulation in the raw data, we
heuristically assume that: 1) the trend component should be
smooth, to avoid over-fitting to noises, and 2) the period
length of the day-night seasonality component should be
roughly around 24 hours. We insert these assumptions here
by constraining kernel parameters:

24 < lRBF < 48 (8)

0.5 < lperiodic < 10 (9)

22 < Tperiodic < 26 (10)

We constrain RBF kernel to have larger length scale to learn
the long-term trend, and periodic kernel to have smaller
length scale to avoid averaging out local patterns. Period
length of the periodic kernel is constraint between 22 hours
to 26 hours.

Fig. 3 shows an example GP modeling of blood pressure
signals. Black cross markers are normalized raw data. The
trend kernel learns a smooth change trend in the signal,
while periodic kernel captures local repetitive patterns. Data
points outside model’s confidence region (light blue area) are
considered as abnormal points.

Fig. 3: GP modelling of normalized systolic blood pressure.

C. LOS and Mortality Prediction

To validate whether our anomaly detection and encoding
can capture abnormal information in patients’ physiology,
we compare encoded data with raw data regarding several
patient risk estimation tasks: mortality prediction and LOS
prediction. If the anomaly-encoded data contains critical
information in the raw data, it is expected to achieve similar
or better performance in the prediction tasks. We use data
samples from the entire patient cohort for mortality predic-
tion task, and only the survivor cohort to predict if the patient
can be discharged within 7, 14, or 21 days.

We consider RF and XGBoost as our baseline models,
where time-series signals are represented by their average or



TABLE III: Input features.

Data Category Data Type Input Features

Patient Information numeric age, admission weight
categorical gender, admission type

Vital Sign numeric heart rate, oxygen saturation, respiration rate, systolic/mean/diastolic blood pressures, temperature, O2 flow, FiO2
categorical temperature site, heart rhythm, ectopy type, ectopy frequency

Lab Test numeric Chloride (serum), Sodium (serum), Potassium (serum), Creatinine (serum), HCO3 (serum), BUN, Anion gap,
Hematocrit (serum), Glucose (serum), Hemoglobin, Platelet Count, WBC, Magnesium, Phosphorous,
Calcium non-ionized, PT, INR, PTT, Glucose, FS (range 70 -100), Lactic Acid, ALT, AST, Total Bilirubin,
Alkaline Phosphate, PH (Arterial), TCO2 (calc) Arterial, PO2 (Arterial), PCO2 (Arterial), Arterial Base Excess

TABLE IV: Model performance scores.

Precision and specificity scores are compared at a recall score of
80%. XGB: XGBoost, enc.: encoded, mort.: mortality.

AUROC AUPRC accuracy precision80 specificity80

RF

avg mort. 0 0.773 0.421 0.837 0.291 0.595
los 7 0.729 0.803 0.674 0.701 0.477
los 14 0.708 0.538 0.707 0.420 0.471
los 21 0.700 0.354 0.820 0.253 0.472

max mort. 0 0.780 0.438 0.838 0.299 0.613
los 7 0.731 0.803 0.679 0.708 0.495
los 14 0.711 0.536 0.707 0.424 0.478
los 21 0.708 0.359 0.821 0.260 0.493

XGB.

avg mort. 0 0.801 0.467 0.839 0.320 0.649
los 7 0.760 0.826 0.704 0.734 0.556
los 14 0.732 0.571 0.720 0.437 0.505
los 21 0.717 0.370 0.819 0.254 0.457

max mort. 0 0.797 0.475 0.841 0.311 0.631
los 7 0.746 0.815 0.690 0.718 0.519
los 14 0.720 0.555 0.712 0.428 0.487
los 21 0.703 0.357 0.817 0.253 0.476

CNN

raw mort. 0 0.795 0.464 0.757 0.312 0.636
los 7 0.755 0.815 0.684 0.729 0.546
los 14 0.733 0.560 0.682 0.448 0.528
los 21 0.720 0.361 0.686 0.271 0.518

enc. mort. 0 0.828 0.536 0.757 0.348 0.690
los 7 0.774 0.835 0.698 0.742 0.574
los 14 0.751 0.586 0.689 0.466 0.560
los 21 0.747 0.396 0.688 0.285 0.551

maximal value in the 48-hour window. Our CNN model is
trained with the raw and encoded time-series data.

We train each model in a 5-fold cross validation scheme
and ensemble the resulted models for prediction in the test
cohort. Model performance scores are summarized in Tab.
IV. The overall model performance is evaluated by Area
Under Receiver Operating Characteristic Curve (AUROC).
We observe that RF and XGBoost models have better
performance with maximal and average data representation
respectively. CNN trained with encoded data achieves an
AUROC of 0.83 and an Area Under Precision Recall Curve
(AUPRC) of 0.54 for mortality prediction task. It effectively
increases AUPRC of CNN trained with raw data (see Fig.
4a), and it has overall better performance than RF and
XGBoost models (see Fig. 5a). The same applies to LOS
prediction models (see Fig. 4b, 5b, 5c, 5d).

IV. CONCLUSION AND FUTURE WORKS

In this work, we use GP model to estimate the expected
physiological ranges for individual patient. Such model,
which takes personalized change trends and 24-hour circu-
lation in physiological signals into account, is promising
to reduce false alarm rate in bedside patient monitoring

(a) Precision-Recall curve for mortality prediction.

(b) Precision-Recall curve for LOS prediction.

Fig. 4: Precision-Recall curves.

compared with current threshold-based monitoring methods.
Based on the GP model, we introduced an anomaly-

encoding method. It proved to effectively improve model
performance in mortality and LOS prediction tasks compared
with the raw data. With commonly available patient informa-
tion, bedside physiological measurements and lab test, our
CNN model trained with encoded data achieves an AUROC
score of 0.83 and an AUPRC score of 0.54 for mortality
prediction. Tuning the classification threshold to detect 80%
mortality cases, the model has a false alarm rate of 65% and
correctly recognizes 69% survivor cases.

Understanding more criteria that influence patient physi-
ological signals can be an effective way to improve current



(a) Mortality. (b) LOS >= 7.

(c) LOS >= 14. (d) LOS >= 21.

Fig. 5: Comparison of Model performance scores.
Precision and specificity scores are compared at a recall score of 80%.

bedside patient monitoring and reduce false alarms. With
more densely recorded patient data, it is also possible to
use Gaussian models to learn the transient patterns, e.g.,
how patients’ vital signs responses to certain medicines,
treatments and physical activities. These transient models
can be integrated with our current models to provide a com-
prehensive personalized event-aware monitoring for patient
bedside measurements.
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