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Abstract— Prostate cancer (PCa) is one of the most prevalent
cancers in men. Early diagnosis plays a pivotal role in reducing
the mortality rate from clinically significant PCa (csPCa).
In recent years, bi-parametric magnetic resonance imaging
(bpMRI) has attracted great attention for the detection
and diagnosis of csPCa. bpMRI is able to overcome some
limitations of multi-parametric MRI (mpMRI) such as the
use of contrast agents, the time-consuming for imaging and
the costs, and achieve detection performance comparable
to mpMRI. However, inter-reader agreements are currently
low for prostate MRI. Advancements in artificial intelligence
(AI) have propelled the development of deep learning
(DL)-based computer-aided detection and diagnosis system
(CAD). However, most of the existing DL models developed
for csPCa identification are restricted by the scale of data
and the scarcity in labels. In this paper, we propose a
self-supervised pre-training scheme named SSPT-bpMRI with
an image restoration pretext task integrating four different
image transformations to improve the performance of DL
algorithms. Specially, we explored the potential value of the
self-supervised pre-training in fully supervised and weakly
supervised situations. Experiments on the publicly available
PI-CAI dataset demonstrate that our model outperforms the
fully supervised or weakly supervised model alone.

I. INTRODUCTION

Prostate cancer (PCa) is the second most common cancer
in men. The latest statistics of cancers states that more than
370,000 people worldwide died from PCa in 2020 alone
[1]. Early diagnosis and treatment of clinically significant
PCa (csPCa) are crucial in improving the cure rate of PCa
[2]. Prostate-specific antigen (PSA) testing and digital rectal
examination (DRE) used in routine screening of PCa may
under-diagnose of csPCa and over-diagnose of benign tissues
or indolent lesions, which can miss malignant lesions or lead
to unnecessary biopsies [3], [4]. Since 2010, the application
of multi-parametric magnetic resonance imaging (mpMRI)
in detecting csPCa and guided targeted biopsy has become
a rapidly developing clinical research topic in the field of
urological oncology [5]. In recent years, bi-parametric MRI
(bpMRI) has gained popularity owing to its applicability in
high-volume and population-based screening with enhanced
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efficiency when compared to mpMRI. This technique offers
reduced scan time, decreased utilization of contrast agent and
lower costs [6]. However, detection and diagnosis of csPCa
lesions in bpMRI is challenging due to the difficulty of dis-
tinguishing csPCa from non-progressive clinical symptoms
such as benign prostatic hyperplasia, prostatitis and cysts in
prostate MR images.

Recently, advancement in artificial intelligence (AI) has
spurred the use of automated computer-aided detection and
diagnosis system (CADs) to help radiologists detect csPCa
lesions from mpMRI/bpMRI. There has been development of
customized deep neural network (DNN) models for csPCa
detection and diagnosis [7], [8]. DNN models rely heavily
on large-scale, high-quality labeled datasets that are difficult
to obtain due to data silos, privacy protection, tedious label-
ing, etc. Prostatectomy specimen confirmed labels are more
accurate but less common. Most existing models trained on
small datasets in a fully supervised manner have problems
such as poor generalization ability and model over-fitting [7],
[9]. Recently, Joeran et al. [10] proposed a semi-supervised
model to automatically generate labels using image diag-
nostic reports and partially labeled image data. Their aim
was to reduce labeling costs and improve labeling efficiency,
paving the way for the use of larger datasets. However,
the labels generated by the model were often inaccurate
and the performance of the deep learning (DL) models
was heavily affected by noisy labels. Alternatively, self-
supervised learning (SSL), a form of unsupervised learning,
where the data themselves can generate supervisory signals
for the model training can be used. It has shown great
success in many computer vision [11] and medical image
segmentation tasks [12].

In this paper, we propose a new 3D self-supervised pre-
training framework on the bpMRI of prostate (SSPT-bpMRI),
which can be applied to various image analysis tasks, such as
prostate segmentation and PCa grading. Our model makes up
for the shortcomings of the existing SSL models that are pre-
trained on single-modal or specific multi-modal images with
difficulty to generalize to bpMRI. Furthermore, we design an
image restoration pretext task for pre-training of the model
which captures distinctive image characteristics of bpMRI,
focusing on their appearance, content and texture. Subse-
quently, we fine-tuned the model on a small but fully labeled
dataset and also on a larger dataset with noisy labels added,
respectively. We analyzed the effect of self-supervised pre-
training on fully supervised learning and weakly supervised
learning. The experimental results on the PI-CAI dataset [13]
demonstrate that our self-supervised pre-training improves
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the generalization performance of the model trained from
scratch on a small dataset, and enhances the stability of the
model in the presence of noisy labels.

II. MATERIALS AND METHODS

A. Materials

The PI-CAI dataset contains images from three Dutch cen-
ters (Radboud University Medical Center (RUMC), Zieken-
huis Groep Twente (ZGT), University Medical Center
Groningen (UMCG)) and one Norwegian center (Norwegian
University of Science and Technology (NTNU)). Two sub-
datasets of this dataset are used. We use the Public Training
and Development Dataset for model training and validation
and the Hidden Validation and Tuning Cohort for model
testing. All patient exams are of men suspected of harboring
csPCa (e.g., due to elevated levels of PSA, abnormal DRE
findings). Patients are included only if they do not have a his-
tory of treatment or prior International Society of Urological
Pathology (ISUP) grading ≥ 2 findings. For all the patients,
bpMRI scans (including axial T2-weighted imaging (T2W),
axial high b-value (≥ 1000 s/mm2) diffusion-weighted
imaging (DWI), axial apparent diffusion coefficient maps
(ADC)) acquired using Siemens Healthineers or Philips Med-
ical Systems-based scanners with surface coils are offered.

There are 1500 cases in the Public Training and Develop-
ment Dataset. Among them, 1075 cases have benign tissues
or indolent PCa, and 425 cases have malignant lesions.
The benign cases are labeled as zero. 220 malignant cases
are manually labeled. Labels of the rest 205 malignant
cases are AI-derived in a semi-supervised learning strategy
proposed by Joeran et al. [10]. This sub-dataset contains
MRI scans acquired using seven different scanners, from two
vendors, at three centers (RUMC, ZGT, UMCG). Thus, the
spatial resolutions of its images vary across different patient
exams. For instance, in the case of the axial T2W scans,
the most common voxel spacing (in mm/voxel) observed
is 3.0×0.5×0.5 (43%), followed by 3.6×0.3×0.3 (25%),
3.0×0.342×0.342 (15%) and others (17%). There are 100
cases in the Hidden Validation and Tuning Cohort. This
sub-dataset contains MRI scans acquired using nine different
scanners, from two vendors, at three centers (RUMC, ZGT,
UMCG). All the cases are manually labeled by experts.
Details of the images are not publicly available.

B. Methods

The overview of our framework is shown in Fig. 1. It
consists of self-supervised pre-training (SSPT-bpMRI) and
fully supervised or weakly supervised fine-tuning. In the self-
supervised pre-training stage, the 3D U-Net [14] is trained
based on an image restoration task that unifies four cus-
tomized image transformations. In the fine-tuning stage, we
perform csPCa detection based on the nnU-Net framework
[15], and the network is initialized by the pre-trained 3D
U-Net with network topology given by nnU-Net framework.

1) Data Pre-processing: All the data were transferred to
NifTI format and then re-sampled to the same dimensions
and spatial resolution as their corresponding original T2W
images. For SSPT-bpMRI, all the data are re-sampled to
3.0×0.5×0.5 (mm/voxel), and the central area mainly includ-
ing prostate sized 256×256×20 are extracted as the region
of interest (ROI). T2W and DWI images are normalized
to [0, 1] by the min-max normalization, and the intensity
values in each ADC map are clipped within the range of
[0, 3000] and then normalized to [0, 1]. For fine-tuning on
the downstream csPCa detection and diagnosis task, the data
pre-processing is automatically completed by following the
nnU-Net framework settings.

2) Self-supervised Pre-training: To pre-train the 3D U-
Net architecture, four specially tailored data augmentation
methods are used in a unified image restoration task.

• Non-linear transformation. By recovering the intensity
values of the images that have undergone a set of
monotonically nonlinear transformations, the model can
learn the appearance of the anatomic structures present
in the images.

• Local shuffling guides the model to learn rich local tex-
ture and boundary information of objects while keeping
its global structure understandable.

• Inner-cutout guides the model to learn the local contin-
uous of organs.

• Outer-cutout guides the model to learn the spatial layout
and global geometry of organs.

More detailed descriptions of data augmentation methods are
also available in [16].

The network is trained on the sub-volumes sized
64×64×16 which were randomly extracted from the im-
ages to scale up the amount of data and support 3D SSL
training on limited computing resources. The model con-
verges towards the object of decreasing the mean squared
error (MSE) loss [17]. Given N samples, we select S sub-
volumes from each sample to form the new dataset O =
{s1, s2, si, . . . , sS×N}, then the MSE loss can be expressed
as

Lmse =
1

S ×N

i=S×N∑
i=1

(g(f(si))− si)
2 (1)

where f(·) denotes the image transformation function and
g(·) on behalf of the mapping of the network from the
generated image to the original image. Well, there are three
channels in si including T2W, ADC and DWI images.

3) Fine-tuning for csPCa Detection and Diagnosis: Based
on the nnU-Net framework, all the layers in the pre-trained
U-Net are fine-tuned. The last layer of the pre-trained net-
work is not retained in order to adapt to the downstream
detection task. The loss function is a combination of focal
loss [18] and cross-entropy loss [19]. The output of the
softmax activation generated by nnU-Net is transformed to
the detection map where each lesion region on the map
corresponds to a unique probability value through a candidate
lesion extraction method [10]. The candidate lesions are only
extracted from the centrally cropped region of physical size



Fig. 1. The overview of our framework for csPCa detection and diagnosis.

192 × 192 × 60 mm3. The maximum probability value of
the predicted lesions in each image is regarded as the result
of the patient-level diagnosis.

4) Implementation Details: For the self-supervised pre-
training, we extracted 16 3D sub-volumes from each case
and the ratio of the training set to the test set is 4:1. The
stochastic gradient descent (SGD) with a momentum of 0.9
is selected as the optimizer. The initial learning rate (0.1) is
gradually reduced according to the step learning rate policy.
The maximum of epoch is set to 1000 and the early stopping
strategy is adopted with 20 epochs of patience. For the
csPCa detection and diagnosis, the initial learning rate (0.01)
is gradually reduced according to the ”poly” learning rate
policy and the maximum of epoch is set to 1000.

III. RESULTS AND DISCUSSIONS

A. Experiments Setup

Our experiments include: 1) self-supervised pre-training,
2) fine-tuning on the supervised PI-CAI Public Training and
Development Dataset with 1295 cases and testing the model
on the PI-CAI Hidden Validation and Tuning Cohort; 3) fine-
tuning on the weakly supervised PI-CAI Public Training and
Development Dataset with 1500 cases and testing the model
on the PI-CAI Hidden Validation and Tuning Cohort. To
pre-train the network, 80% of all the 1500 cases are used
for training and the rest 20% are used for validation. Five-
fold cross-validation with the splits provided by the PI-CAI
challenge organizers was used for model fine-tuning.

B. Evaluation

Lesion-level detection performance is evaluated using
the Average Precision (AP) metric. Patient-level diagnosis
performance is evaluated using the Area Under Receiver
Operating Characteristic (AUROC) metric. Overall score is
the average of both task-specific metrics:

Overall Score = (AP +AUROC)/2

C. Results and Discussions

We compare the cross-validation and test results of our
model with the results of the baselines of the PI-CAI
challenge including U-Net [14], nnDetection [20] and nnU-
Net [15]. Performance of the models on the fully supervised
dataset and the weakly supervised dataset was compared. Ta-
ble I presents the cross-validation results and Table II shows
the test results of the models trained on fully supervised
dataset. In Table III cross-validation results of weakly super-
vised dataset are presented with testing results in Table IV.
The models were evaluated based on the manually labeled
data. For cross-validation results, the mean and standard
deviation are calculated.

On the fully supervised dataset, our model achieved the
best score with 0.6636 on cross-validation and 0.600 on
test, best AP with 0.4647 on cross-validation and 0.479
on test. In AUROC, our model scored 0.8624 on cross-
validation and 0.721 on test. This shows that self-supervised
pre-training can improve the generalization performance of
the fully supervised model. The results generated by nnU-
Net trained from scratch was better than both the U-Net and
the nnDetection (see Table I and Table II). On the weakly
supervised dataset, our model obtained better results com-
paring to the nnU-Net trained from scratch, with AUROC of
0.8358 and AP of 0.4352 on cross-validation and AUROC
of 0.823 and AP of 0.613 on test (see Table III and Table
IV). This is attributed to self-supervised pre-training that has
a certain anti-noise ability which helps in improving model’s
learning ability from noisy labels. On both cross-validation
and test, nnDetection had the best AUROC (cross-validation:
AUROC of 0.8405, test: AUROC of 0.885) but lower AP
(cross-validation: AP of 0.4236, test: AP of 0.582). This
may be because nnDetection pursues object-level detection
rather than pixel-level segmentation. In addition, our results
show that increasing the data size improves the generalization
performance of the model, even in the presence of noisy
labels.



TABLE I
CROSS-VALIDATION RESULTS ON THE SUPERVISED DATASET

Models/Metrics Score AUROC AP
UNet 0.5981±0.0634 0.8162±0.0462 0.3800±0.0808

nnDetection 0.6253±0.0280 0.8450±0.0188 0.4057±0.0452
nnUNet 0.6609±0.0183 0.8661±0.0070 0.4556±0.0390

SSPT-bpMRI (ours) 0.6636±0.0330 0.8624±0.0163 0.4647±0.0570

TABLE II
TEST RESULTS OF MODELS TRAINED ON THE SUPERVISED DATASET

Models/Metrcis Score AUROC AP
UNet 0.576 0.689 0.463

nnDetection 0.502 0.735 0.269
nnUNet 0.597 0.737 0.457

SSPT-bpMRI (ours) 0.600 0.721 0.479

IV. CONCLUSIONS

In this paper, we propose a self-supervised pre-training
scheme named SSPT-bpMRI with a unified image restoration
task that incorporates multiple image transformation strate-
gies to pre-train a model using large-scale bpMRI datasets.
It learns general feature representations of image appear-
ance, content, and texture of bpMRI. We conducted csPCa
detection and diagnosis based on the nnU-Net framework,
and the pre-trained model was fine-tuned and tested on fully
supervised and weakly supervised datasets. Our experimental
results demonstrate that our self-supervised pre-training can
effectively improve the generalization performance and pro-
vide anti-noise learning ability of models trained on weakly
supervised datasets.
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