
  

  

Abstract— The purpose of this study was to use machine 

learning (ML) algorithms to identify tissue damage based on the 

mechanical outputs of computational models of spinal cord 

injury (SCI). Three datasets corresponding to gray matter, white 

matter, and the combination of gray and white matter tissues 

were used to train the models. These datasets were built from the 

comparison of histological images taken from SCI experiments 

in non-human primates and corresponding subject-specific 

finite element (FE) models. Four ML algorithms were evaluated 

and compared using cross-validation and the area under the 

receiver operating characteristic curve (AUC). After 

hyperparameter tuning, the AUC mean values for the 

algorithms ranged between 0.79 and 0.82, with a standard 

deviation no greater than 0.02. The findings of this study also 

showed that k-nearest neighbors and logistic regression 

algorithms were better at identifying injured elements than 

support vector machines and decision trees. Additionally, 

depending on the evaluated dataset, the mean values of other 

performance metrics, such as precision and recall, varied 

between algorithms. These initial results suggest that different 

algorithms might be more sensitive to the skewed distribution of 

classes in the studied datasets, and that identifying damage 

independently or simultaneously in the gray and white matter 

tissues might require a better definition of relevant features and 

the use of different ML algorithms. These approaches will 

contribute to improving the current understanding of the 

relationship between mechanical loading and tissue damage 

during SCI and will have implications for the development of 

prevention strategies for this condition. 

 
Clinical Relevance— Linking FE model predictions of 

mechanical loading to tissue damage is an essential step for FE 

models to provide clinically relevant information. Combined 

with imaging technologies, these models can provide useful 

insights to predict the extent of damage in animal subjects and 

guide the decision-making process during treatment planning. 

I. INTRODUCTION 

Spinal cord injury is triggered by mechanical loading, 
which causes a series of biological responses resulting in 
irreversible functional damage to the neurological system [1]. 
Understanding the relationship between mechanical loading 
and tissue damage in the spinal cord could be a critical step to 
anticipating the injury spreading, particularly in animal 
models, where it is possible to control the mechanical loading 
conditions [2], [3]. This preliminary insight into the injury 
outcomes could provide useful information to define 
mechanical threshold values, that will result in tissue damage. 
Injury thresholds would establish relevant criteria for the 
design of protective equipment, and for clinicians to select the 
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most appropriate treatment to implement [2]–[4]. For these 
reasons, several studies have looked to establish the 
relationship between mechanical loading and tissue damage in 
the spinal cord [2]–[5], but it is not yet well defined. 

Computational finite element (FE) models of SCI are a 
complementary and non-invasive approach to further explore 
the relationship between mechanical loading and tissue 
damage [2], [3], [5], [6]. Previous studies have employed a 
combination of computational models and histopathological 
findings from SCI experiments to gain a closer insight into the 
distribution of loads in the spinal cord tissue. For example, 
mechanical outcomes from FE models of rat [4], [5] and non-
human primate (NHP) [3] experiments were correlated with 
observed biological damage in the animals' tissues using 
statistical methods such as linear and logistic regression. These 
studies found that there was a stronger correlation between the 
mechanical features and the damage in the gray matter (GM) 
than in the white matter (WM) tissue of the spinal cord. 
However, during an injury, both GM and WM tissues are 
subjected to mechanical loading, and therefore it is important 
to accurately identify the potential injury in both tissues. 

Current applications of artificial intelligence in SCI 
research suggest it can find non-obvious correlations between 
variables [7]–[9]. For instance, ML algorithms have been used 
in combination with imaging technologies, such as magnetic 
resonance imaging (MRI), to identify lesions and damage to 
the spinal cord [7]. Other applications of ML algorithms have 
used clinical data to predict changes in functional outcomes 
after treatment [7], [9], and to assess the pain in patients with 
SCI [8]. These studies leverage the advantages of ML 
algorithms to understand complex relationships between 
variables [7]–[9], motivating their exploration in this study. It 
is hypothesized that using ML algorithms could improve the 
identification of injured elements in both the GM and WM 
tissue based on mechanical loading predictions from FE 
models of SCI. Moreover, training different ML algorithms 
with this data could provide clarify the correlation between 
mechanical load and injury outcomes. 

II. METHODS 

In this study, we aimed to improve a previously proposed 
method for the identification of injury from mechanical tissue 
loading data. Datasets collected in [3] were used to train four 
classification ML algorithms from the scikit-learn library [10]: 
logistic regression (LR), decision trees (DT), support vector 
machines (SVM), and k-nearest neighbors (KNN). Then, the 
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performance of each model was evaluated to select the best 
one for the identification of injured elements. 

A. Dataset details 

Pre-injury MRI scans taken from three NHP subjects were 
used to develop subject-specific FE models matched to in vivo 
experiments (see Fig. 1-B) [3]. The results from the FE models 
of the spinal cord tissue were segmented into WM and GM 
elements. The dataset consisted of five mechanical features 
with the most relevance and correlation with tissue damage 
[3]: min/max principal logarithmic strain (LEP), logarithmic 
strain in axonal direction (LEAXON), Tresca stress 
(TRESCA), and strain energy density (ESEDEN). Structural 
tissue damage in the spinal cord was observed from cross-
sectional histological slices for each subject [11] (Fig. 1-A). 
Overlaying the histology data on element slices from the 
computational models, each element was assigned into one of 
two target classes: injured or healthy.  

 
Figure 1.  Histology sections and the FE models comparison. 
Histological analysis performed on the spinal cord of NHP subjects, 

adapted from [11] (A); an example of subject-specific FE models (B). 

 

After having been assigned to a target class, the elements 
from the FE models were used to create three datasets across 
all subjects: GM elements (GM-only), WM elements (WM-
only), and combined GM & WM elements (GM&WM) to 
explore the differences in predicting tissue damage in the 
spinal cord based on evaluating GM-only or WM-only, or 
combined tissue elements, GM&WM. The experimental SCI 
were mild, resulting in more healthy elements in the datasets 
than injured elements.  In addition, there were more WM than 
GM elements in the dataset due to the tissue distribution in the 
cervical spinal cord. These uneven distributions of data per 
tissue type and target value (healthy/injured) were accounted 
for in the training and implementation of the ML algorithms. 

B. Data pre-processing 

1) GM-only, WM-only, and GM&WM datasets 
The datasets were imported from comma-separated values 

files and converted into data frames using Python's pandas 
library. The datasets were checked for duplicated values and 
for redundant features, and then split into train, validation, and 
test datasets with 70%, 20%, and 10% of the original dataset 
respectively, using the train_test_split_ function [10]. To keep 
the original class distribution in the split datasets, the 'stratify' 
parameter was set (Table I). Datasets from GM-only and WM-
only were concatenated into a new dataset as GM & WM 
dataset. To distinguish GM and WM, a new feature column 
'TissueType' was included in the dataset. 

TABLE I.  NUMBER OF HEALTHY (H) AND INJURED (I) ELEMENTS 

AFTER EACH DATASET SPLIT 

Dataset 
Train Validation Test 

H I H I H I 

GM-only 965 553 276 158 138 79 

WM-only 3952 1202 1129 344 565 172 

GM&WM 4916 1755 1406 502 703 251 

C. Parameter tuning and cross-validation 

To compare the performance of the four ML models on 
each dataset, a 10-fold cross-validation (CV) was employed 
using the StratifiedShuffleSplit [10]. This scikit function 
combined k-fold with shuffle splits to generate randomized 
sets that preserved the class distribution of the original set. 
Each algorithm was first fitted with the training portion of the 
data and then the validation set was used to find the best hyper 
parameters using the RandomizedSearchCV function [10]. To 
avoid overfitting during the parameter optimization, an 
additional 5-fold stratified shuffle split was included in the CV 
parameter of the RandomizedSearch function. The range of 
evaluated parameters for each algorithm during the 
randomized search are described in Table II. 

TABLE II.  TABLE RANDOMIZED SEARCH PARAMETERS EVALUATED  

FOR EACH ML ALGORITHM DURING HYPERPARAMETER TUNING 

General & algorithms’ parameters 

n_iter = 50 scoring = roc_auc 

LR DT SVM KNN 

C: loguniform 

(1e-5, 100) 

Criterion: gini, 

entropy 

C: loguniform 

(1e0, 4e2) 

n_neighbour: 

range(1, 100) 

Solver: 
liblinear, lbfgs, 

newton-cg 

min_samples 
_split: range 

(2, 80) 

Gamma: auto, 

scale 

Weights: 
uniform, 

distance, none 

Class_weight: 

balanced, none 

Splitter: best, 

random 

Kernel: rbf, 

poly, sigmoid 
- 

- 
Class_weight: 
balanced, none 

Class_weight: 
balanced, none 

- 

 
After the hyperparameter tuning, each dataset was split 

again into new training and test sets, where the validation and 
test set were combined into a larger evaluation set (30% of the 
original data) for the CV. The mean and standard deviation 
(SD) values for the balanced accuracy, precision, recall, F1 
score, and AUC metrics were calculated for each algorithm 
after the 10-fold CV. 

III. RESULTS 

A. Parameter tuning and cross-validation 

After 10-fold CV, the AUC mean values and standard 
deviation for all the algorithms and datasets ranged between 
0.79-0.82 and 0.01-0.02, respectively (see Table III). 

TABLE III.  CV MEAN [SD] AUC VALUES FOR EACH ML ALGORITHM 

AFTER HYPERPARAMETER TUNING 

 LR DT SVM KNN 

GM-only 0.805[0.01] 0.808[0.01] 0.808[0.01] 0.811[0.01] 

WM-only 0.809[0.01] 0.789[0.02] 0.799[0.02] 0.793[0.02] 

GM&WM 0.815[0.01] 0.800[0.02] 0.804[0.02] 0.802[0.02] 

 
The AUC values acquired for the different algorithms were 

relatively similar for the GM-only dataset (see Table III). 
Therefore, the F1 score values were used to select the best 



  

performing algorithm, since this metric provides information 
regarding the trade-off between precision and recall [10]. 
Based on the new criteria, the KNN algorithm was selected for 
the GM-only set. LR showed the best classification 
performance for both the WM-only and GM&WM sets. The 
combination of parameters that provided these results are 
listed in Table IV. 

TABLE IV.  BEST PERFORMING ML ALGORITHMS FOR EACH DATASET 

WITH THE CORRESPONDING SET OF HYPERPARAMETERS 

GM-only WM-only GM&WM 

KNN LR LR 

n_neighbors: 31 C: 3.756 C: 50.745 

weights: uniform solver: newton-cg solver: liblinear 

- 
class_weight: 

balanced 

class_weight: 

balanced 

 
For a more in-depth comparison of the best algorithms' 

performance on each dataset, the values of other evaluated 
metrics: balanced accuracy, precision, recall, and F1 score, 
were plotted and are shown in Fig. 2. 

 
Figure 2.  Metrics score of the best performing algorithms for each 

dataset after CV and hyperparameter tuning, using the 30% test set. 

IV. DISCUSSION 

A. Parameter tuning and cross-validation 

The best AUC scores were achieved by the KNN and LR 
algorithms.  The mean scores and the standard deviation values 
show a consistent performance during the 10-fold CV for 
every algorithm. This shows that the hyperparameter tuning 
process did not overfit the algorithms to the validation data, 
and the selected parameters contributed to have a robust 
performance on each iteration of the stratified shuffle split CV. 

The best parameters described in Table IV for the ML 
algorithms help to assess their generalization to new data. With 
KNN, the 'uniform' weight criteria provided better results than 
a distance-based approach, implying that the algorithm was 
less susceptible to overfitting or being influenced by outliers. 
The LR models for the WM-only and GM&WM sets both 
worked better with balanced class weights. These results were 
expected since it is recommended to set this parameter 
whenever the evaluated dataset is imbalanced [10]. There was 
also a difference between the 'C' values in both LR algorithms. 
This parameter, known as the inverse regularization strength 
[10], controls how much the algorithm will fit the training data. 
In the WM-only set, the value for 'C' is smaller compared with 
the one for the GM&WM dataset. Although this might suggest 

the LR algorithm corresponding to the GM&WM set might be 
overfitted, it still showed consistent results during the CV. 

Despite falling within the narrow range of 0.79 and 0.82, 
the AUC scores differed depending on the evaluated dataset. 
These results agree with other biomedical binary classification 
studies [12], [13], where the performance of ML algorithms 
was linked to the ability to find patterns in the data [13]. In this 
study, differences in sample sizes and distribution of classes 
could further affect the algorithms' sensitivity. For instance, 
the WM-only set has more than three times the number of 
samples than the GM-only one (see Table I). At the same time, 
this smaller sample size increases the percentage of injured 
elements in this set. Around 36% of the GM-only dataset are 
injured elements, in contrast with the 23% and the 26% 
included in the WM-only and GM&WM datasets, 
respectively. This variance in number of injured elements is 
related to the structural differences in the GM and WM tissues. 
The first is a homogeneous and blood vessel-dense tissue [5], 
while the latter shows anisotropic behavior due to the highly 
aligned set of axonal fibers [3]; these differences in GM and 
WM tissue properties affect their mechanical response during 
injury, and therefore the distribution of damage. These 
observations highlight the classification challenges of the data 
and justify the interest in exploring the use of ML to better 
identify injured sections in the spinal cord tissues. 

The unbalanced distribution of injured and healthy 
elements was one of the reasons the AUC score was selected 
as the comparison metric. Although in other ML applications 
the accuracy score determines the classification potential of an 
algorithm [12], in this study, the skewed class distribution 
limits this metric’s relevance. Different metrics reported in the 
literature provide a better measure of the classification 
performance of an algorithm dealing with unbalanced datasets 
[14]. However, the AUC score was selected as the metric to 
evaluate, since the results found in [12], [15] show it is robust 
for both balanced and unbalanced datasets, even those with a 
greater imbalance compared with these data. Despite the 
reliability of the AUC metric, the differences in algorithm 
performance were more evident with other metrics. As shown 
in Fig. 2, the balanced accuracy and AUC scores were similar 
between datasets. However, precision scores were 
significantly lower in the WM-only and GM&WM datasets 
compared to the GM-only set, indicating there is a greater 
number of false-positive cases in the classification. These 
results might be related to the smaller number of injured 
samples available for those sets and the differences in 
correlation between mechanical features and the damage in 
GM or WM tissue found in [3], [5]. 

Another reason for calculating the AUC values was to 
compare the results with those reported in [3], where LR was 
similarly used to investigate the correlation between FE 
outcomes and tissue damage on the same data. The mean AUC 
values acquired in [3] ranged between 0.85-0.95 for the GM 
and 0.72-0.9 for the WM matter. In this study, similar scores 
were achieved: 0.81 for the GM-only dataset and a range 
between 0.79-0.81 for the WM-only. Although the acquired 
range of AUC values are lower than the ones found in [3], one 
key difference of this study is that collinear features and outlier 
experimental data were removed from the input samples. In 
[3], the data of a FE model corresponding to a NHP subject 
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whose experiment deviated from the expected outcomes was 
included. The results from this experiment and FE model were 
significantly different than the ones found in other subjects, 
therefore those samples were excluded from the input data 
used in this study. During the data pre-processing, the von-
Mises and TRESCA features had a Pearson correlation 
coefficient of 1, indicating collinearity between the variables, 
therefore a LR model was fitted to the training data and the 
feature coefficients were compared; as a result, only the 
TRESCA feature was included. Ensuring the quality of the 
data and avoiding additional sources of variability are a 
fundamental step to obtaining more accurate results, which can 
allow us to draw more reliable conclusions regarding the 
relationship between mechanical loading and tissue damage 
during SCI. 

V. LIMITATIONS 

The available data from the NHP experiments included a 
limited number of samples from only three subjects for the 
training and validation of the ML algorithms. A larger sample 
size could reduce the risk of overfitting and provide more 
reliable results. Secondly, although subject-specific FE models 
of SCI, such as the ones developed in [3], have proved to be 
close representations of injury experiments, the acquired 
mechanical results are still approximations based on the 
defined geometries and available material properties. As these 
definitions are improved, the accuracy of the FE models will 
also increase, improving the datasets. The histology used to 
characterize tissue damage was obtained several weeks after 
the mechanical impact to the spinal cord, so the resulting 
damage is a combination of mechanical loading and biological 
responses, which likely confounds our ability to predict tissue 
level injury from mechanics alone. Additionally, there exist 
more sophisticated ML algorithms that might outperform the 
ones evaluated in this paper; however, this study was proposed 
as an exploratory attempt to validate and justify a more 
thorough exploration of the use of ML in the SCI context. 

VI. CONCLUSION 

This study explored one of the current limitations of the FE 
models of SCI: the identification of injured elements in the 
spinal cord. The results indicated that the performance of the 
ML models varied for GM, WM, and combined (GM & WM) 
datasets as the distribution of samples, relevant features, and 
target values varied across datasets. This suggests that FE 
models might benefit from using different classifiers to 
explore the correlation between the mechanical outputs and 
tissue damage in the gray and white matters. Combining the 
datasets from the GM and WM samples and defining the type 
of tissue as a feature showed little effect on improving the 
classification performance of the ML models. Moving 
forward, this approach can help define injury thresholds based 
on mechanical features and quantify relationships between 
mechanics and tissue damage. This will contribute to 
improving the pre-clinical reliability of computational models, 
and open new avenues for the implementation of ML 
algorithms to identify spinal cord injury damage. 
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