
  

  

Abstract—Obstructive Sleep Apnea (OSA) is the most 

common sleep-related breathing disorder, with an overall 

population prevalence ranging from 9% to 38%, and it is 

associated with many cardiovascular diseases. The diagnosis of 

OSA requires polysomnography (PSG) testing, which is 

unsuitable for large-scale preliminary screening due to its high 

cost and discomfort to wear. Therefore, a simple and inexpensive 

screening method would be of great value. This study presents a 

novel at-home OSA screening method using a smartwatch and a 

smartphone to obtain several physiological signals, snoring 

segments, and questionnaire information during a whole night's 

sleep. The proposed method can distinguish four OSA risk levels 

based on machine learning (ML) classifications; the system was 

validated by conducting an in-hospital study on 350 subjects 

with sleep disorders. The estimated OSA risk levels are in good 

agreement with the OSA severity diagnosed by PSG (correlation 

with apnea-hypopnea index (AHI) = 0.92), and an encouraging 

classification performance is achieved (accuracy = 88.1%, 

84.5%, 85.1%, sensitivity = 89.1%, 84.2%, 85.6% for mild, 

moderate and severe OSA). These findings reveal that wearable 

devices have the potential for large-scale OSA screening. 

I. INTRODUCTION 

Sleep Apnea Hypopnea Syndrome (SAHS) is a chronic 
disease that significantly impacts an individual's health[1]. 
Obstructive Sleep Apnea is the most common type of SAHS. 
The main clinical manifestations of Obstructive Sleep Apnea 
(OSA) are loud snoring, morning headache, and daytime 
sleepiness. Frequent apnea, which are characterized by 
temporary cessation of breathing during sleep, can cause 
nocturnal hypoxia and hypercapnia, adding risk to 
complications such as hypertension, coronary heart disease, 
diabetes, cerebrovascular disease, and even sudden death at 
night[2]. As a potentially life-threatening sleep-related 
breathing disorder, the primary pathogenesis of OSA is upper 
airway stenosis, obstruction, or collapse. 

The gold standard for clinical diagnosis of OSA is 
polysomnography (PSG) testing, which requires simultaneous 
monitoring of electroencephalogram (EEG), electrooculogram 
(EOG), electromyography (EMG), electrocardiogram (ECG), 
nasal pressure, airflow (AF), chest and abdomen breathing 
efforts, snoring, etc. Moreover, the cost of PSG testing is high, 
and it is complicated to wear, which will interfere with the 
patient's sleep and produce the first night effect. Furthermore, 
according to American Academy of Sleep Medicine (AASM) 
standards, PSG signals require manual scoring by trained 
technicians. However, subjective judgments can affect the 
results, and agreement between two scorers on the annotation 
of PSG events is only 71%[3]. Therefore, seeking a low-cost, 
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convenient, and high-accuracy OSA monitoring technology is 
essential. 

In recent years, the rise of wearable devices such as 
smartwatches has made it possible to monitor physiological 
signals continuously. Wearable devices are usually equipped 
with multiple sensors to monitor blood oxygen saturation, 
heart rate, and respiratory rate during sleep. Wearable devices 
provide a convenient and comfortable way to assess sleep 
quality and OSA risk levels. 

The OPPO watch (OW) [4], a smartwatch equipped with 
photoplethysmography (PPG) and ACC sensors, was used in 
this study. It connects to the smartphone through the HeyTap 
Health APP. Users need to fill out a questionnaire on the APP 
and turn on the snoring monitoring function. The algorithm 
calculates the sleep stage, HR, respiration, SpO2, and snoring. 
After the user wakes up, the algorithm will automatically 
summarize the features of the whole night and calculate the 
respiratory event index (REI) and OSA severity through ML 
and deep learning (DL) models.  

In this study, we developed and validated a system for 
estimating OSA severity using smartphones and smartwatches. 
The algorithm detected respiratory events and extracted OSA 
risk factor characteristics by combining sleep stage, SpO2, 
respiratory rate, heart rate variability, snoring, and 
questionnaire results. Then ML models estimated the REI and 
the OSA severity. We verified the performance by conducting 
an in-hospital study using both our devices and PSG. 

II. MATERIALS AND METHODS 

Fig. 1. The flow diagram of the OSA screening system. 

Fig. 1 is the flow diagram of the OSA screening system 
design containing six blocks: hardware, data acquisition, data 
processing, feature extraction, DL, and post-processing. The 
system collected raw sensor signals and questionnaires 
through smartphones and smartwatches. The physiological 
signals such as sleep stage, SpO2, respiration, heart rate, and 
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snoring were obtained by raw signal processing and analysis. 
We can detect respiratory events and extract OSA risk factors 
from the physiological signals and questionnaires. Then these 
factors were fed into three ML models to estimate OSA 
severities and REIs. Simultaneously, we estimated REIs from 
all the physiological signals through a DL module. All the 
REIs and OSA severities above were weighted to obtain the 
final result. 

A. Clinical Dataset 

The 357 participants for this study were recruited from the 
sleep medicine center of Shenzhen People's Hospital from 
June 1, 2022, to November 15, 2022. It was approved by the 
Ethics Committee of the Shenzhen People's Hospital as LL-
KY-2022140-01. All participants signed informed consent 
forms.  

B. Experimental Setup 

Each participant was connected with PSG leads and wore 
an OW by the technicist during sleep. Snore monitoring is 
enabled through the HeyTap Health app and placed within 1 
meter. The smartwatch collected infrared, red, green PPG and 
triaxial acceleration signal at a sampling rate of 50Hz. The 
phone collected audio recordings, which were collected at a 
sampling rate of 8kHz, and recorded the answers to a 
questionnaire. The PSG devices were Philips Alice 6 LDE 
(Philips Healthcare, Inc.), and the Sleepware G3 software was 
also used. Trained technicians scored PSG signals following 
the AASM guidelines.  

Some data were excluded due to signal quality, recording 
duration, and wearing status problems. The detailed conditions 
are as follows:1) Less than 3 hours of sleep; 2) Missing 
audio recordings or questionnaire; 3) Poor signal quality; 4) 
Valid signal length is less than 3 hours; 5) Missing PSG data. 

Finally, a total of 350 participants formed the dataset. 25 
participants didn’t have OSA (apnea-hypopnea index, 

AHI<5), 72 had mild OSA (5≤AHI<15), 94 had moderate 

OSA (15≤AHI<30), and 159 had severe OSA (AHI≥30). 

C. Data Processing and Feature Extraction 

1) Sleep Stages: Sleep stages are calculated from the 
accelerometer and green PPG. The accelerometer can detect 
user actions, and PPG can calculate HRV. Sleep state can be 
measured according to motion amplitude and HRV. PPG 
signals are filtered with a bandpass filter at [0.75,5] Hz. HRV 
features are calculated from RR intervals obtained by the peak-
seeking algorithm. The algorithm uses actions and HRV 
features to estimate sleep states (deep sleep, light sleep, and 
rapid eye movement (REM)) through rules and ML methods.  

2) SpO2: The OW is equipped with red and infrared PPG 
and accelerometers. OW can be used to estimate SpO2 by the 
different absorption rates of oxygenated hemoglobin (HbO2) 
and deoxygenated hemoglobin (Hb) [5]. After eliminating the 
segments with low SNR, the signal was interpolated and 
filtered. Then AC and DC were obtained, and r values were 
calculated. Finally, the SpO2 was estimated according to the r 
curve. The r curve is calibrated in a specially collected private 
dataset and independent of the dataset in this paper. 

The OW calculates SpO2 per second continuously and 
obtains signal quality. An oxygen desaturation event was 

defined as a 4% decrease in SpO2 and can be detected through 
the SpO2 curve. However, oxygen desaturation events did not 
correspond to apnea and hypopnea events one by one. 
Respiratory disease, sleep arousal, motion artifacts, and so on, 
will produce artifacts to affect the SpO2 values. The detected 
oxygen desaturation events are classified as respiratory-related 
events according to SpO2 morphology and quality. Finally, 
SpO2-based REI was estimated by the SpO2 algorithm. 

3) HRV: Respiratory-related events are accompanied by 

fluctuations in instantaneous heart rate. Respiratory events 

can also be distinguished from the spectral characteristics of 

RR intervals, mainly reflected in ultra-low frequency energy. 

In the Sleep Stages section, we have described the method 

for calculating HRV by green PPG. 

We calculated time domain and frequency domain 

HRV features using a 1-minute window. Time domain 

features include SDNN, RMSSD, NN50, PNN50, heart rate 

standard deviation, range of heart rate, etc. Frequency 

domain features include LF ratio ([0.04 0.15) Hz), HF ratio 

([0.15 0.4) Hz), VLF ratio ([0.003 0.04) Hz), LF/HF ratio, 

and VLF/HF ratio[6]. Based on these features, we developed 

a HRV algorithm to detect respiratory events.  

The HRV algorithm uses a machine learning model to 

calculate the probability of respiratory events as A = {x1, x2, 

…, xn} at the interval of 10s. For the element xi, get the num 

m of xi > 0.5 within i ~ i+k (k is a specified threshold). A 

respiratory event is recorded if m is greater than the 

specified threshold. We set minimum intervals for adjacent 

respiratory events to avoid double counting. Finally, the 

HRV-based REI was estimated by the HRV algorithm. 

4) Respiration: Respiratory signals during sleep can be 
extracted from the PPG and ACC of the OW. OW can detect 
the occurrence of apnea events by the decrease in the intensity 
of respiratory. The end of an apnea event is usually 
accompanied by arousal that produces a slight movement. A 
decrease in respiratory intensity lasting more than 10s, 
accompanied by arousal movements, was defined as an apnea 
event. OW summarizes events and calculates REI estimated 
for respiratory signals. 

Fig. 2. Signal trends during apnea episodes. 



  

5) Snore: We divided audio into frames (256 points per 
frame) and calculated short-time energy (STE) and zero-
crossing rate (ZCR) on the filtered audio. Then the audio signal 
is detected and segmented. The Mel Frequency Cepstrum 
Coefficient (MFCC), ZCR, STE, and other audio signal 
features are calculated to classify snoring and other sounds[7].  

The OW-paired HeyTap Health App detects snoring 
through the algorithm described above. Each snore records its 
start and end time, acoustic characteristics, etc. Persistent 
snoring is interrupted when apnea occurs. Algorithms detect 
snoring interruptions and determine whether the interruption 
is followed by awake or louder snoring, which implies 
respiration-related events. Finally, the snore-based REI was 
estimated by the snore algorithm. 

6) Mutual Authenticating of Different Signals: OW 
detected respiratory events using SpO2, HRV, respiration, and 
snore signals separately. However, the effects of apnea or 
hypopnea on different signals are interrelated, as shown in Fig. 
2, on which each color represents a single apnea event. At the 
onset of apnea, snoring ceases, followed by a decrease in SpO2 
and respiration intensity, and an increase in heart rate. Upon 
apnea cessation, snoring, SpO2, respiration intensity, and heart 
rate return to normal levels. The hysteresis of SpO2 causes the 
oxygen desaturation event to be delayed by about 25 seconds 
compared to snoring and heart rate changes. Events detected 
by different signals were mutual authenticated to improve the 
accuracy of the final results. Respiratory-related events were 
confirmed if detected in two or more signals within the same 
time window. Then the mixed events-based REI was 
estimated. 

7) Questionnaire: The sleep questionnaire in Table I is an 
example of the OSA screening questionnaire used in this 
paper. Most of the questions are about high-risk factors that 
may cause OSA, the sensitivity of some factors to OSA can 
reach 97.7%[8]. 

Questionnaire information includes subjects' personal 
information (neck circumference, BMI), night sleep status, 
daytime activity status, daily routine, and primary disease 
history. Nocturnal sleep conditions refer to the sleep 
disturbances that may occur during sleep were discovered by 
others: apnea, shortness of breath, wheezing, and suffocation; 
each event can last from several seconds to several minutes, 
and it occurs several times throughout the night. Sometimes 
there will be sounds such as suffocation or nasal sounds when 
rebreathing. When normal sleep is disturbed, it will cause 
memory loss, short temper, fatigue, and drowsiness during the 
day. The daily routine includes whether the subject has long-
term smoking, drinking, use of sedatives, or other bad living 
habits. Disease history refers to diseases highly related to 
OSA, including 1) cardiovascular and cerebrovascular 
diseases, such as atrial fibrillation, coronary heart disease, 
stroke, and hypertension[9]; 2) respiratory narrowing 
diseases[10]: such as mandibular retraction, tongue 
hypertrophy, adenoid enlargement, long soft palate tissue, and 
rhinitis; 3) lung diseases: such as chronic obstructive 
pulmonary disease, asthma, tuberculosis. 

D. Classification 

We employed multi-input deep learning architectures to 
determine the probability of respiratory events. The deep 

learning model utilizes SpO2, respiratory waveforms, heart 
rate, and action amplitude to approximate the density of 
respiratory-related events within a 15-minute timeframe. Upon 
awakening, the REI-DL can be assessed. 

We also derive statistical features from sleep stages, HR, 
SpO2, Resp, and snore, such as total sleep time, mean SpO2, 
heart rate, and snoring frequency. The XGBoost algorithm, an 
ensemble tree machine learning model, incorporated both 
REI-DL and statistical features as input, while the OSA risk 
level determined by polysomnography (PSG) served as a label, 
as shown in Fig.1. We developed classification and regression 
models for evaluating OSA risk levels and Apnea-Hypopnea 
Index (AHI) estimations, respectively. 

E. Validation 

To ensure the balance between different categories of 

data, we use Stratified 5-fold Cross Validation (S5CV, each 

fold maintains the same proportion of each category in the 

original data) to train the XGBoost model. Finally, we 

obtained the receiver operating characteristics (ROC) curve 

and the confusion matrix from the model. Meanwhile, the 

average accuracy, sensitivity, specificity, and area under the 

curve (AUC) of multi-fold validation under the AHI 

threshold of 5, 15, and 30 can be obtained. 

III. RESULTS 

Fig. 3 shows the performance of the XGBoost model, 
which includes: (a). The ROC curve corresponds to the AHI 
threshold of 15 (the thick red diagonal line represents the result 
of random guessing, the blue thick is the average value of 
multiple folds, and the thin lines of different colors represent 
the prediction results of each fold); (b). The confusion matrix 
corresponding to the S5CV algorithm, which represents the 
OSA severity obtained from PSG (0: normal; 1: mild; 2: 
moderate; 3: severe) compared with the result predicted by the 
XGBoost model, the value in each cell represents the number 
of subjects. Generally, the darker the cell color, the larger the 
value; the darker-colored cells on the diagonal represent a high 
proportion of accurately predicted objects. 

Fig. 3. The ROC curve corresponding to the AHI threshold of 15 and the 
confusion matrix of the XGBoost model. The performance is supported by 

670 pieces of data on both hands from 350 participants. 

Table I gives the statistical information of the six most 
related features from the questionnaire, where the Positive 
ratio is the proportion of patients who answered yes for the 
feature. Correlation r represents the correlation between the 
feature and the standard AHI from PSG.   

In the decision module, we combine the results of ML and 
DL models to obtain the final OSA severity. An overview of 
the results can be seen in Table II. The tabular data shows that 
as the AHI threshold increases, the requirements for judging 
as positive become more stringent, and the proportion of 



  

subjects predicted to be positive becomes smaller, so the 
classification sensitivity decreases and the specificity 
increases. 

TABLE I. STATISTICAL RESULTS OF SIX  FEATURES 

EXTRACTED FROM THE QUESTIONNAIRE. 

Feature Positive ratio Correlation, r  

Cough or snore 83.6% 0.24 

Apnea or wheeze 38.2% 0.25 

Shortness of breath 44.5%  0.20 

Drink alcohol 11.3% 0.22 

BMI > 25 kg/m2 57.8% 0.40 

Neck circ > 40 cm 24.1% 0.47 

TABLE II. CLASSIFICATION PERFORMANCE UNDER THREE AHI 
THRESHOLDS OF 5, 15, AND 30. 

Performance Acc (%) Sen (%) Spec (%) 

th5 88.1 89.1 75.5 

th15 84.5 84.2 85.3 

th30 85.1 85.6 84.7 

IV. DISCUSSION 

In this study, we proposed a multi-modal based method to 
estimate OSA severity conveniently on wearable devices and 
validated the result against PSG. Three types of features were 
used, including physiological parameters (such as HR, SpO2, 
respiration, and motion parameters), snoring segments, and 
questionnaire information are fed into our ML and DL models. 
The final classification results in Table II show that the system, 
as a non-invasive, convenient, and low-cost OSA screening 
tool, performed very well on the 350 subjects we collected. 
Furthermore, we investigated the performance of other similar 
technologies in literature (selecting recent studies on 
estimating OSA severity using wearable devices sensor data 
and validation with clinical datasets). The specific results are 
presented in Table III. Our proposed method exhibits an 
overall improvement in performance across different 
thresholds when compared to existing literature. This finding 
highlights the significant advantage of our approach for 
estimating OSA severity. 

While smart wearable devices may not supplant 
polysomnography (PSG) for OSA screening due to their 
limited capacity to extract physiological signals, such as 
respiratory or brain waves, their ongoing development holds 
promise. As these devices continue to evolve, they will likely 
expand the scope of signal acquisition, enabling the 
unobtrusive and continuous monitoring of multi-dimensional 
sleep characteristics within the comfort of one's home. This 
advancement could pave the way for innovative OSA 
monitoring approaches and offer an affordable, objective 
solution for large-scale chronic disease screening. 

V. CONCLUSION 

This paper introduces a novel system for estimating the 
severity of OSA using smartphones and smartwatches. Our 
approach demonstrates promising results in three binary 
classification tasks, achieving accuracies ranging from 84.5% 
to 88.1%, sensitivities between 84.2% and 89.1%, and 
specificities from 75.5% to 85.3%. Based on these findings, 
we conclude that our method holds significant potential for 
large-scale OSA screening in the general population. 

TABLE III. COMPARISON OF DIAGNOSTIC PERFORMANCE WITH 

THE REFERENCES. 

Research 

paper 

Equipment 

type 
Performance 

AHI threshold 

5 15 30 

Gu et al, 
2020[11] 

Ring Acc (%) 86 86 86 

Sen (%)  95 85 22 

Spec (%) 29 87 100 

Zhao et al, 

2022[12] 

Ring Acc (%) 86 76 91 

Sen (%)  87 66 74 

Spec (%) 83 96 100 

Chen et al, 
2021[13] 

Smartwatch Acc (%) 81.1 88.3 88.4 

Sen (%)  67.5 88.7 85.7 

Spec (%) 94.7 87.8 91 

Papini et al, 

2020[14] 

Smartwatch Sen (%)  77 62 46 

Spec (%) 72 91 98 

Our paper Smartwatch Acc (%) 88.1 84.5 85.1 

Sen (%)  89.1 84.2 85.6 

Spec (%) 75.5 85.3 84.7 
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