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 Quantitative Assessment of 
 COVID-19 Lung Disease Severity: 
 A Segmentation-based Approach* 

 Edward P. Booker, Mehdi Paak, Mohammadreza 
 Negahdar 

 Abstract  —  We  present  the  use  of  mean  Hounsfield  units 
 within  lungs  as  a  metric  of  disease  severity  for  the  comparison 
 of  image  analysis  models  in  patients  with  COPD  and  COVID. 
 We  used  this  metric  to  assess  the  performance  of  a  novel  3D 
 global  context  attention  network  for  image  segmentation  that 
 produces  lung  masks  from  thoracic  HRCT  scans.  Results 
 showed  that  the  mean  Hounsfield  units  enable  a  detailed 
 comparison  of  our  3D  implementation  of  the  GC-Net  model  to 
 the  V-Net  segmentation  algorithm.  We  implemented  a 
 biomimetic  data  augmentation  strategy  and  used  a  quantitative 
 severity  metric  to  assess  its  performance.  Framing  our 
 investigation  around  lung  segmentation  for  patients  with 
 respiratory  diseases  allows  analysis  of  the  strengths  and 
 weaknesses of the implemented models in this context. 

 Clinical  Relevance  —  Mean  Hounsfield  units  within  the  lung 
 volume  can  be  used  as  an  objective  measure  of  respiratory 
 disease  severity  for  the  comparison  of  CT  scan  analysis 
 algorithms. 

 I.  I  NTRODUCTION 

 In  this  study,  we  aimed  to  develop  a  lung  segmentation  for 
 patients  with  severe  respiratory  diseases.  The  relevant 
 datasets  used  were  annotated  thoracic  CT  scans  from 
 COVID-19  and  chronic  obstructive  pulmonary  disease 
 (COPD)  patients.  Labeled  CT  data  are  expensive  and  time 
 consuming  to  produce,  and  as  such  the  publicly  available 
 datasets  are  small  and  inconsistently  labeled.  Therefore, 
 there  is  a  need  for  methods  to  compensate  for  limitations  of 
 available  datasets  with  biologically-inspired  data 
 augmentation  e.g.,  Sousa  et  al.[1]  There  has  been  criticism 
 of  using  generated  data  for  medical  imaging  applications, 
 however.  Chang  [2]  and  Vallon  et  al.  [3]  discussed  the 
 limitations  of  data  augmentation  strategies  in  medical  image 
 analysis  and  state  that  clinical  expertise  is  needed  to  guide 
 training and determine relevant features for model training. 

 Image  segmentation  models  are  useful  for  aiding  medical 
 decision  making,  accelerating  diagnosis,  and  patient 
 treatment  planning  [4-8].  Many  reports  on  segmentation 
 models  based  on  U-Net  [9]  and  V-Net  [10]  architectures 
 have  shown  promising  performance  [11-14].  Of  particular 
 interest  are  models  utilizing  the  attention  mechanism  to  aid 
 image segmentation, such as UNETR [15]. 
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 One  version  of  the  attention  mechanism,  global  context, 
 is  calculated  by  taking  a  weighted  average  from  all  positions 
 in  an  image  embedding  [16].  This  weighted  average  can  be 
 used  to  weight  an  input  from  another  layer.  This  allows 
 lower-level  features  to  be  affected  by  broader  context;  we 
 refer  to  this  as  the  global  context  attention  mechanism 
 (GCA).  GCA  was  incorporated  into  a  segmentation 
 algorithm,  GC-Net,  which  was  demonstrated  in  2D  by  Ni 
 [17].  We  implement  this  method  for  3D  image  segmentation 
 and  compare  it  to  the  state-of-the-art  V-Net  model.  GC-Net 
 was  chosen  as  a  promising  non-transformer  approach  to  the 
 attention mechanism in image segmentation. 

 There  have  been  many  other  reports  of  2D  segmentation 
 on  CT  slices  from  COVID  patients  [14,  18,  19].  Of 
 particular  note  is  the  model  produced  by  Hofmanninger  et  al. 
 [14],  which  is  well-documented,  is  transparent  over  data 
 sources,  and  performs  with  98%  Dice.  Despite  its 
 performance  on  even  severe  COVID  patients,  this  model 
 does  not  correlate  well  between  layers  in  CT  volumes.  This 
 lack  of  correlation  leads  to  jagged  edges  in  dimensions 
 perpendicular  to  the  scan  direction  and  under  segmentation 
 sandwiched between segmented layers. 

 3D  segmentation  models  can  correlate  between  layers. 
 Successful  3D  segmentation  models  have  been  reported  in 
 COVID  scans  [19,  20],  but  there  is  a  lack  of  shared  models, 
 diverse  performance  statistics,  under-reporting  of 
 performance  on  severe  cases,  and  a  quantification  or 
 qualification  of  what  severe  means.  These  deficits  make  it 
 challenging  to  compare  models.  Lung  segmentation  masks 
 for COVID, either severe or mild, are scarce. 

 Established  methods  to  assess  the  severity  of  respiratory 
 disease  via  CT  scans  using  standardized  scoring  systems, 
 such  as  those  proposed  by  van  der  Ven  et  al.  [21]  and  Brody 
 et  al.  [22]  rely  on  subjective  assessments,  expert  annotation 
 or  electronic  medical  record  data  for  objective  scoring.  In 
 this  study,  we  suggest  a  novel  objective  severity  score  that 
 does  not  require  expert  annotation,  and  can  be  applied  across 
 diverse datasets when there are differences in clinical data. 

 High  X-ray  attenuation  in  CT  scans  is  observed  in  lungs 
 of  the  most  severe  patients  with  COVID  [23]  or  pneumonia 
 [24].  X-ray  attenuation  is  measured  in  Hounsfield  Units 
 (HU).  Yamada  found  that  high  HU  alone  did  not  predict 
 patient  outcomes,  and  therefore  it  can  only  be  used  as  an 
 approximate  measure  of  patient  severity  [23].  This 
 observation  enables  the  use  of  mean  HU  in  the  lungs  as  a 
 measurement  of  patient  severity  to  compare  model 
 performance, but not to predict outcomes. 

 In this report we: 

 ●  Implemented  two  model  architectures:  V-Net  and  a 
 novel 3D implementation of GC-Net 

 ●  Implemented  novel  biomimetic  data  augmentation 
 to improve segmentation on severe cases. 

 ●  Quantitatively  compared  the  performances  of  these 
 models with respect to disease severity 

 II.  M  ETHODS 

 All  models  were  trained  using  216  CT  scans  from  the 
 COPD  [25]  CT  dataset  and  70  scans  from  a  Genentech 
 dataset  of  COVID  patients.  The  mean  HU  of  this  dataset  and 
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 the  training,  test,  and  validation  splits  are  shown  in  Fig.  1a. 
 Images  were  stored  in  the  nifti  format,  voxel  values  were 
 normalized  in  HU.  These  two  diseases  are  complementary 
 for  training  lung  segmentation  models,  as  both  can  cause 
 consolidation  (areas  of  significantly  increased  attenuation). 
 Consolidation  on  the  periphery  of  the  lung  can  obscure  the 
 lung boundary and make the boundary hard to detect. 

 Some  COVID  cases  can  have  attenuation  values  as  high 
 as  -100  HU  in  the  lungs  (Fig.  1b),  in  comparison  to  values  of 
 -800  to  -600  HU  in  healthy  lungs  [23].  Severe  COVID  data 
 is  scarce  and  model  exposure  for  training  presents  a 
 challenge.  Fig.  1a  shows  that  the  mean  HU  value  in  the  vast 
 majority  of  the  dataset  is  less  than  -600  HU.  COVID  cases 
 are shown in lighter colors. 

 To  make  up  for  the  scarcity  of  severe  COVID  data,  we 
 implemented  data  augmentation  to  mimic  the  trends  seen  in 
 COVID  cases.  Fig.  1  shows  the  changes  of  HU  values  as 
 scans  progress  through  the  lungs  of  COVID  patients  of  a 
 variety  of  severities.  Moderate-to-severe  COVID  cases  have 
 a  constant  offset  in  HU  values  from  the  baseline,  often  with 
 a  hump  in  values  at  some  point  in  the  scan.  Our 
 augmentation  method  adds  a  random  offset  to  raw  lung 
 image  data  and  a  Gaussian  hump  centered  within  the  lungs 
 of  the  patient  (Fig.  2a)  as  well  as  patches  of  pathological 
 tissue  sampled  from  a  publicly  available  annotated  dataset  of 
 100  individual  CT  slices  from  COVID  patients  [26].  This 
 type  of  domain-knowledge-based  data  augmentation  has 
 been  successfully  implemented  [27],  using  patches  from 
 other  data  samples  [28]  or  GANs  [29]  to  generate 
 appropriate synthetic data. 

 We  did  an  ablation  study  to  compare  the  performance  of 
 models  with  or  without  this  augmentation  strategy,  and  with 
 no  data  augmentation.  In  both  augmentation  approaches, 
 generic  augmentation  strategies  are  used  (rotation,  gaussian 
 noise,  patch  swapping,  etc.).  This  method  cannot  be  used  for 
 identification  of  pathological  tissue  as  the  biomimetic 
 augmentation will alter the characteristics of those tissues. 

 Figure 1. a) Distribution of average HU value across lung volumes in the 
 train, test, and validation datasets. Light colors show COVID patients. b) 
 Variation in mean HU values of slices along the height of scans. The scan 
 for the patient in red (-400 < mean HU) has fewer slices than the others. 

 The  models  used  in  this  study  have  similar  architectures. 
 An  encoder  path  that  compresses  a  3D  image  array  into  an 
 embedding  and  a  bottleneck  layer.  The  embedding  then  gets 
 decoded  to  the  original  image  size.  The  encoder  and 
 decoder  layers  of  the  same  size  are  connected  by  skip 
 connections  (Fig.  2b).  The  two  models  used  are  V-Net  and  a 
 novel 3D implementation of the GC-Net architecture. 

 The loss function was a linear combination of Dice and 
 cross entropy as implemented in Monai [30]. In GC-Net the 
 bottleneck layer is a squeeze-and-excitation spatial pyramid 
 pooling (SEPP) layer, and the encoder layers are GCA layers 

 followed by upsampling convolutional layers. The SEPP 
 layer (with original expansion rates)  and GCA layers were 
 implemented in 3D by substitution of the layers in Ni et al. 
 [21] with their 3D equivalents. The skip connections include 
 a buffer layer. 

 Figure 2. Model and biomimetic augmentation method schematics. a)  Steps 
 in data-inspired data augmentation. A Gaussian peak and a constant offset 
 are added within the input lung mask. The texture-based augmentation is 
 not shown here. b) Architecture. Blue arrows indicate down transitions, red 
 arrows up transitions, black the bottleneck transition and green the skip 
 connections. 

 For  GC-Net,  the  learning  rate  used  was  1×10  -3  ,  the 
 dropout  rate  was  0.6,  the  cross-entropy/Dice  ratio  in  the  loss 
 function  was  0.4,  and  the  training  weight  decay  was  1×10  -5  . 
 The  V-Net  implementation  by  Monai  [30]  is  used  here.  The 
 V-Net  learning  rate  used  was  2×10  -3  ,  dropout  rate  was  0.6, 
 the  cross-entropy  to  Dice  ratio  in  the  loss  function  was  0.4, 
 and the training weight decay was 1×10  -5  . 

 The  GC-Net  model  has  122,113,196  parameters,  whereas 
 the  V-Net  model  has  45,597,898.  All  models  were  compared 
 after training for 23 epochs with fixed random seeds. 

 For  model  comparison  identical  postprocessing  was 
 applied:  the  largest  connected  components  in  the  central 
 50%  of  the  volume  were  taken  as  the  lung  mask 
 (components  smaller  than  10%  of  the  largest  component  are 
 ignored), and 3D holes were filled. 

 III.  R  ESULTS 

 Variations  in  COVID  patient  vital  signs  with  the  mean 
 HU  in  the  lungs  calculated  from  a  thoracic  CT  scan  taken  on 
 the  same  day  as  the  measured  vital  signs  are  shown  in  Fig.  3. 
 The  correlation  between  oxygen  saturation  and  mean  HU  in 
 the  lungs  was  the  strongest,  which  is  expected  as  a  reduction 
 in  lung  function  from  increased  fluid  would  be  expected. 
 The  relationships  between  mean  HU  and  both  pulse  and 
 respiratory  rates  was  weak,  but  both  confirm  the  correlation 
 between  the  severity  of  the  state  of  a  patient  and  their  CT 
 scan.  These  correlations  do  not  suggest  the  mean  HU  could 
 be  used  to  predict  patient  outcomes,  but  we  take  this  as 
 justification  to  use  the  mean  HU  to  compare  model 
 performance. 

 The  performance  of  the  biomimetic  data  augmentation, 
 basic  augmentation,  and  no  data  augmentation  models  are 
 shown  in  Fig.  4  and  Table  1.There  was  a  drop-off  in  model 
 performance  as  the  mean  HU  in  the  lung  volume  increases 
 for  all  the  models.  Comparing  Fig.  4c  and  4e,  except  for 
 some  lower  cases  at  low  mean  HU,  the  GC-Net  model 



 maintained  performance  as  mean  HU  increases  better  than 
 the V-Net model. 

 Figure 3 a)-c) Graphs of variation in oxygen saturation, pulse rate, and 
 respiratory rate with mean HU in patient scans. 

 Figure  4.  Model  performance  statistics  for  the  different  architectures 
 investigated.  a)  and  c)  show  how  the  Dice  score  varies  with  mean  HU  value 
 within  the  lungs  for  V-Net  and  GC-Net  respectively.  Points  represent 
 individual  image  results,  points  with  white  crosses  are  COVID  patients. 
 Straight  lines  are  lines  of  best  fit.  b)  and  d)  show  histograms  of  Dice  scores 
 for V-Net and GC-Net respectively. 

 TABLE I.  M  ODEL  P  ERFORMANCE  S  TATISTICS 

 Model - 
 Augmentation  Dice (%)  a  Covid Dice 

 (%)  b 
 Severe Dice 

 (%)  c 

 GC-Net - No Aug.  97.6 ± 0.4  93.9 ± 1.6  92 ± 2 

 GC-Net - Basic Aug.  96.6 ± 0.7  94.9  ± 1.0  93 ± 2 
 GC-Net -Biomimetic 
 Aug.  95.4 ± 0.8  89 ± 3  92 ± 2 

 V-Net - No Aug.  97.6 ± 0.4  93.5 ± 1.5  92 ± 2 

 V-Net - Basic Aug.  97.7 ± 0.3  94.7 ± 1.3  93 ± 2 
 V-Net -Biomimetic 
 Aug.  95.4 ± 1.0  88 ± 4  93 ± 2 

 a.  The  mean  Dice  score  for  all  samples.  b.  The  mean  Dice  score  for  all  Covid  samples.  c.  The 
 mean  Dice  score  for  the  two  Covid  samples  over  -600  mean  HU.  The  error  is  the  standard  error  in  the 
 mean. 

 The  V-Net  model  yielded  the  highest  performance 
 averaged  over  all  cases  (Table  1).  The  GC-Net  model 
 achieved  comparably  high  performance  (within  the  standard 

 error  in  the  mean  performance)  to  the  best  V-Net 
 implementation.  It  can  further  be  seen  that  GC-Net  with 
 basic  augmentation  achieved  the  highest  performance  in 
 COVID  cases,  with  over  97%  Dice  for  lung  segmentation 
 averaged over all patients. 

 A  comparison  of  results  from  various  data  augmentation 
 methods  showed  that  the  biomimetic  method  did  not  provide 
 an  improvement  in  average  score  in  either  of  the  models 
 investigated.  The  performances  on  both  cases  above  -600 
 mean  HU  suggest  that  biomimetic  augmentation  was  able  to 
 generalize  better.  Further,  there  was  a  smaller  drop  in  Dice 
 score  as  the  mean  HU  increases  going  from  no  augmentation 
 to  basic  augmentation  to  biomimetic  augmentation.  This 
 type  of  comparison  requires  a  quantitative  measurement  of 
 patient  severity.  It  is  noted  that  the  scarcity  of  patients  above 
 -600 HU makes these conclusions tentative. 

 Fig.  5  shows  select  qualitative  results  comparing  the 
 performances  of  the  models  studied  on  different  severity 
 patients.  Fig.  5a  is  -761  HU  and  Fig.  5d  is  -479  HU.  GC-Net 
 preserves  more  of  the  shape  of  the  segmented  tissue  than 
 V-Net,  and  also  identifies  areas  of  higher  HU  values  than  the 
 V-Net model, but misses some components. 

 Figure  5.  Qualitative  results  from  models  trained  with  biomimetic 
 augmentation.  Rows  show  results  on  the  same  volume,  columns  show 
 results on the same model. Pink backgrounds show ground truth labels. 

 IV.  D  ISCUSSION 

 Fig.  4  and  Table  1.  suggest  that  the  use  of  this 
 domain-inspired  data  augmentation  may  be  a  useful  tool  that 
 can  be  implemented  in  scenarios  where  edge  cases 
 (peripheral  consolidation  in  our  example)  are  scarce  and 
 generic  data  augmentation  is  insufficient  to  allow  the  models 
 to  generalize,  although  it  does  weaken  performance  at  lower 
 cases.  This  weakening  may  be  due  to  this  larger  model 
 requiring  significantly  more  training  with  such  augmented 
 data,  or  due  to  reduced  exposure  to  low  mean  HU  patients 
 from the augmentation. 

 Fig.  5  shows  that  highly  consolidated  regions  of  the 
 lungs  may  be  under  segmented  in  all  models.  The  relatively 
 low  drop-off  in  performance  of  the  GC-Net  model  as 
 severity  increases  suggests  that  GC-Net  is  better  able  to 
 generalize  than  V-Net.  We  see  qualitatively  from  Fig.  5,  and 
 quantitatively  in  Fig.  4  and  Table  1,  that  GC-Net  generalizes 
 better  to  higher  mean  HU  than  V-Net,  but  with  poorer  results 
 on  average.  Fig.  5  shows  that  highly  consolidated  regions 



 are  penetrated  better  by  GC-Net,  and  Fig.  4  shows  that  there 
 is  a  smaller  dropoff  in  performance  as  we  increase  the  mean 
 HU  in  the  lung  to  be  segmented.  This  ability  to  generalize 
 better  may  be  due  to  the  SEPP  bottleneck  layer  in  GC-Net 
 preserving  more  spatial  information,  or  due  to  the  global 
 context  in  the  GCA  layers.  Ni  [21]  suggested  that  the  GCA 
 in  their  model  allows  longer  ranged  associations  to  be 
 formed  between  regions  of  the  image.  This  can  be  seen  in 
 Fig.  5,  where  segmented  regions  are  more  continuous  than  in 
 the  other  model.  Inspecting  how  the  results  vary  with 
 domain-relevant  data  is  critical.  We  can  only  tell  that  the 
 drop-off  in  Dice  with  mean  HU  is  lower  in  the  GC-Net 
 model  compared  to  the  V-Net  by  inspecting  the  mean  HU 
 distribution (Fig. 4). 

 This  difference  in  performance  loss  with  mean  HU 
 between  the  methods  used  here  demonstrates  the  importance 
 of  comparing  model  performance  with  a  continuous 
 variable.  Further,  our  clinical  results  validate  the  use  of 
 mean  HU  as  a  way  to  assess  how  lung  segmentation  model 
 performances  vary.  In  contexts  where  there  is  a  variable 
 parameter  that  may  be  used  to  compare  model  performance 
 across  the  domain  of  interest  this  should  be  done  and 
 justified  using  domain-specific  understanding.  This  better 
 identifies  model  performance  trends  in  a  way  that  arbitrary 
 bins, such in Table 1 (COVID or severe COVID), do not. 

 V.  C  ONCLUSION 

 This study confirms that domain-specific knowledge is 
 needed to build robust, generalizable models and the data 
 augmentation schemes for training these models. Model 
 performance should be compared continuously across the 
 training and testing domain if possible, such as by utilizing a 
 quantitative metric for patient severity. 
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