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Abstract— Parkinson’s disease (PD) is considered to be the
second most common neurodegenerative disease which affects
the patients’ life throughout the years. As a consequence, its
early diagnosis is of major importance for the improvement
of life quality, implying that the severe symptoms can be de-
layed through appropriate clinical intervention and treatment.
Among the most important premature symptoms of PD are
the voice impairments of articulation, phonation and prosody.
The objective of this study is to investigate whether the voice’s
dynamic behavior can be used as possible indicator for PD.
Thus in this work, we employ the recurrence plots (RPs)
which derive from the analysis of the three modulated vowels
/a/, /e/ and /o/, which belong to the PC-GITA dataset, and
are fed as input images to a 3-channel Convolutional Neural
Network-based (CNN) architecture, which, finally, differentiates
the 50 PD patients from 50 healthy subjects. The experimental
results obtained provide evidence that the RP-based approach
is a promising tool for the recognition of PD patients through
the analysis of voice recordings, with a classification accuracy
achieved equal to 87%.

Parkinson’s disease, recurrence plots, CNNs, modulated
vowels, speech analysis

I. INTRODUCTION

Parkinson’s disease (PD) affects in an increasing rate the
aging population. PD patients suffer from motor and non-
motor impairments in a multisymptomatic manner. Specifi-
cally, among the most important symptoms are the tremor,
rigidity, bradykinesia as well as speech impairments such
as dysarthria [1]. PD affects speech at the early stage of the
disease and 89% of the patients develop speech disorders [2].
These speech disturbances comprise reduced voice intensity
and prosody as well as imprecise articulation, which is
characterized by narrower pitch range, longer pauses along
with tremor, harsh and breathy voice quality [1]. As a
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consequence, the evaluation of speech is considered critical
and can provide a possible indicator for the early detection
of PD.

The study of phonation and articulation is mainly based on
the analysis of vowels, whilst the choice of words, sentences
and monologue have been proved more appropriate for the
evaluation of prosody [2]. As the clinical evaluation of
classifying parkinsonian voice depends on subjective criteria
and is based on the clinician’s perception, recently the study
of the patient’s voice has been approached through mathe-
matical and computerized methods [1]. The most common
approaches exploit the four main speech aspects, i.e., the
phonatory, the articulatory, the prosodic and the linguistic,
which can be used as voice biomarkers.

Speech analysis has gained the researchers’ interest the last
decades, as speech is the most complex and important human
motor skill [3]. The acoustic characteristics such as the
fundamental frequency and the voice variability provide cues
to the listener about the speaker’s personality and identity.
However, PD patients have a reduced voice variability, which
makes their voice more mono loudness. As a consequence,
the idea behind this study is whether the parkinsonian
voice can be characterized and classified by approaches
which exploit the voice variability. More specifically, we
aim to investigate if PD patients’ voice can be modelled
by dynamic-based approaches and be differentiated from a
healthy subject’s voice.

Considering the speech as a dynamical system, we exploit
two basic properties: (i) the fact that in a dynamical system
similar states are repeated and (ii) that these states evolve in
a similar manner [4]. Accordingly, a mathematical approach,
which studies a system’s dynamic behavior, is the recurrence
plots (RPs) which study the dynamic interrelations among
time-delayed copies of a time series and provide a binary
matrix analogous to the correlation. In this work, we apply
the RPs theory and construct matrices which represent the
dynamic nature of the voice of PD patients as well as that of
healthy subjects. Additionally, these matrices are analyzed by
a deep learning architecture which is based on a 3-channel
Convolutional Neural Network (CNN) model, thus leading
to the classification of these two groups. To the best of our
knowledge this is the first approach of PD analysis through a
dynamic-based method which is further introduced to a deep
learning model towards PD diagnosis.
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II. RELATED WORK

People diagnosed with PD exhibit a diverse manifestation
of heterogeneous symptoms which likely reflect different
subtypes [5]. Speech tasks are among the most robust ways of
evaluating PD and further, assessing the stage of PD to which
a patient is. However, there are no widely accepted criteria
and methodologies totally appropriate for the analysis of the
speech recordings. Our study is based on the analysis of
phonatory recordings and in more detail, on modulated vow-
els. The choice of the modulated vowels task was inspired
by state-of-the-art studies, which aim to recognize the PD
patients from short-duration tasks [1]. Regarding the analysis
of phonemes, the most common approach is through feature
extraction [1]. The evaluation of the PC-GITA database’s
sustained vowels proves that PD patients can be differentiated
from healthy controls with a high accuracy [1]. On the
other hand, spectrograms-based analysis, as proposed in [6],
proved that the phonemes are a suitable manner of evaluating
the PD patients’ phonatory. However, the deep learning
architectures have gained the researchers’ interest recently,
as they can provide more accurate detection of PD [7], [8].
The idea of RPs was inspired by the neuroscience field and
specifically the study proposed in [9].

III. METHODOLOGY

A. The recurrence plots

Recurrence is a fundamental property of dynamical sys-
tems, which can be exploited to characterise the system’s
behaviour in phase space. A powerful tool for their visuali-
sation and analysis called recurrence plot was introduced in
the late 1980’s [4]. In our application, suppose that a system
is a time series x = [x1, . . . , xN ], where as N we denote
the number of samples which define the speech signal. Our
purpose is to create M 2-dimensional recurrences plots of
equal size, one for each examined speech signal, with M =
1, . . . , 100, i.e., equal to the number of the available subjects.
In our mathematical implementation, we have to handle two
limitations: (i) the speech signals are of long duration and (ii)
the time series’ RPs must have the same size, which implies
that the input time series should have the same duration. As
a consequence, regarding the first limitation we employed
the mathematical approach denoted as “recurrence plot of
recurrence plots” (RPofRPs) [10], whilst for the second
limitation we downsampled the available time series, steps
which will be analyzed next.

Recurrence plot of recurrence plots: As the time series
are of long duration, first, we split each time series to K
segments of window length equal to 400 samples, defined
experimentally. Then, suppose that each segment exists in a
phase space trajectory with embedding dimension equal to
m. Each time series consists of K segments, leading to a
variety of different m values for each segment. To overcome
this inequality, we selected the minimum m value among the
different m’s as the most appropriate dimension of the phase
space trajectory. The embedding parameter m was estimated
through the false nearest neighbor algorithm (fNN) [9].

After that, based on the RPofRPs method, we apply the
short-term RP definition [10]. Analytically, each processed
segment, of length 400 samples, is a new time series y ∈
R400×1, from which we extract a RP plot, by following the
next procedure: Defining the copies of a time-series as:

Y (n) = [y(n),y(n+ τ), . . . ,y(n+ (m− 1)τ)], (1)

where n denotes the segments’ samples and τ the time delay,
which usually equals to one.

Using the Euclidean distance, we define an unthresholded
RP as follows: Suppose that we examine two distinct times,
the n1 and n2, then the Euclidean distance ds is:

ds(Y (n1), Y (n2)) =

√√√√m−1∑
m=0

(y(n1 +mτ)− y(n2 +mτ))2,

(2)
and this is repeated for all the pairwise combinations of time
ni, with i = 1, . . . , 400, leading to the RP of a segment out
of the K’s. Then. the RPofRPs is defined as the summation
of the matrix’s elements, derived from the Euclidean distance
between a pairwise combination of (RPi, RPj), with i, j =
1, . . . ,K. To conclude, we take as a result the final RP plot,
denoted as R ∈ RK×K .

However, the RP plots are binary matrices which are
defined by thresholding the weighted R by a value denoted
as ε. The parameter ε defines if two state vectors are close
together in the phase space trajectory. In our mathematical
implementation, ε was selected to be equal to 0.2. As a
consequence, after normalizing the final R recurrence plot
values, by dividing the matrix with the maximum value,
through the Heaviside function Θ(·), if a R value is lower
than ε the function returns “1”, otherwise “0”.

The above procedure is repeated for all the time series,
i.e., for the speech signals of each subjects, so as to give as
input these binary plots to the deep architecture. However,
as mentioned, the second limitation concerns the different
lengths of the speech signals. To overcome this problem, we
chose to undersample the time series to the minimum length
of the whole number of the available time series.

B. Multi-channel CNN-based architecture

The broad graphical depiction of our proposed model is
presented in Fig. 1 and comprises of various components,
including convolution, pooling, dropout, and dense layers.
It consists of 3 inputs, each of them representing a modu-
lated vowel. The selection of a multi-input network model
provides to the user the freedom of editing the network
parameters specifically for each of the chosen vowels as
well as maintaining a better supervision of the effect of each
vowel regarding the output of the model.

Each channel accepts a resized binary image of 48 × 48
as input and provides predicted probabilities as output. The
architecture contains 4 (four) convolution (Conv2D) layers
with 3×3 filters. The Rectified Linear Unit (ReLU) activation
function is used in each Conv2D layer, which helps the
model to avoid high vanishing gradient problems and learn



Fig. 1. Graphical representation of the multi-channel CNN-based architecture.

complex nonlinear functions while training. Moreover, 3
(three) max-pooling (MaxPool2D) layers are utilized with the
kernel size of 2× 2 after each Conv2D layer, except for the
first one, to reduce the dimensions of resulting features maps
from Conv2D layers and leave only high weighted features
as output. Additionally, a dropout layer with a rate of .2 is
utilized after the third MaxPool2D layer of each channel to
avoid overfitting. Then, the outputs of the three channels are
concatenated and served as a merged input for the remain-
der of the network model. Furthermore, one hidden layer,
consisting of 10 neurons with a ReLU activation function in
it, and one dense output layer, containing 1 neuron and a
sigmoid activation function, are used to acquire probability
for the two classes as an output of the model. Besides
this, a flatten layer is utilized before the last dense layer to
transform the multi-dimensional input to one-dimensional. A
visual view of our proposed model is shown in Fig. 1 and
hyper-parameters parameters of various layers are given in
Table I. Finally, the final model consists of a total of 73,343
parameters.

TABLE I
HYPER-PARAMETERS OF THE PROPOSED ARCHITECTURE.

Layer Kernel size Neurons Activation Dropout

Conv2D 1 (input)* 3x3 8 ReLU -
Conv2D 2* 3x3 10 ReLU -

MaxPool2D 1* 2x2 - - -
Conv2D 3* 3x3 32 ReLU -

MaxPool2D 2* 2x2 - - -
Conv2D 4* 3x3 64 ReLU -

MaxPool2D 3* 2x2 - - -
Dropout 1* - - - .2
Concatenate - - - -

Dense 1 - 32 ReLU -
Flatten 1 - - - -
Dense 2 - 1 Sigmoid -

* The layers of one out of the three total channels.

A visual view of our proposed model is shown in Fig. 1
and the hyper-parameters parameters of various layers are

given in Table I.

IV. EXPERIMENTAL EVALUATION

A. Dataset description

The speech corpus used consists of 100 subjects, 50
healthy and 50 PD patients, and contains a variety of speech
recordings in Spanish language. This database, known as PC-
GITA, is balanced, as it contains equal number of healthy and
PD subjects and moreover, each group consists of 25 men
and 25 women. The age of male PD patients ranges from 33 -
77 whilst, for the women from 44 - 75. Regarding the healthy
subjects, the age of male healthy controls ranges from 31
- 86 whilst, for the women from 43 - 76. The recordings
are sampled in 44100 Hz using a dynamic omnidirectional
microphone. The diagnosis of all the patients was made by
neurologist experts and their evaluation was based on the
UPDRS and H&Y scales. Moreover, the recordings were
acquired when the patients were in ON-state, i.e., no more
than 3 hours after their morning medication. Finally, none of
the healthy control had symptoms associated to PD or any
other neurological disease.

From the variety of the speech tasks, we employed the
modulated vowels /a/, /e/, /i/, /o/ and /u/ to analyze, in terms
of our study. Specifically, examining all the 3-modulated
vowels combinations as well as the use of all 5 vowels,
we concluded to the best 3-vowel combination based on the
performance of our pipeline. It is worth to notice that, as
modulated vowel task is denoted the evaluation of phonation
from vowels recordings with a low to high manner.

B. Comparative methods

The choice of the comparative methods was based on
two criteria: (i) we selected the methods of the PC-GITA
phonemes’ analysis and (ii) among them, those which had
achieved the highest accuracy results. Thus, we concluded
to the [1], [6].



C. Experimental setup and implementation

The implementation and experiments were conducted in a
virtual environment based on Python version 3.9.7 that was
installed on a personal computer with GTX GeForce 750
Ti GPU, Intel(R) Core(TM) i7-6700 CPU with 3.40 GHz
clock speed, and 32 GB of RAM. For creating, training, and
assessing the DL model, several frameworks and libraries
are leveraged, including TensorFlow-GPU version 2.5.0 with
the frontend of Keras-GPU. Utilizing a binary cross-entropy
loss function and an Adam optimizer with an initial learning
rate of 10−4, the loss of the model is computed and its
weights are updated during training, respectively. In addition,
the proposed model was trained on 32 minibatch sizes for
45 epochs, which took nearly 20 minutes to complete. In
addition, NumPy is used for a variety of mathematical
operations, such as reshaping and concatenation.

D. Experimental Results

Regarding our experimental procedure, as time delay τ
we selected the value 1, as this is proposed in [9]. We also
examined different τ values, but the performance of our
pipeline was not better. The embedding parameter m was
equal to 3. Finally, multiple thresholds were examined, to
the range [0.2 : 0.05 : 0.4] and the proposed results concern
the parameter ε = 0.2.

For the procedure of the classification stage, we split the
data into training and testing, with the number of the test data
to be 15% of the total number of examples. We evaluated
the performance of our network model using the metrics of
accuracy, precision, recall and specificity. Furthermore, we
validated the models using a 10-fold cross-validation (10-
CV). The experiments were repeated for 300 Monte-Carlo
iterations.

In Table II, we present an overview of our experimental
results as well as the results achieved in the comparative
methods.

TABLE II
EXPERIMENTS USING DIFFERENT TRIADS OF VOWELS.

Vowels Accuracy Precision Recall Specificity

/a/,/e/,/o/-proposed .87 .92 .75 .91
5 sustained [1] .84 - .84 .85

modulated(male) [6] .84 - - -
modulated(female) [6] .76 - - -

Notice that, all possible 3 modulated vowels combinations
were examined concluding to the proposed combination with
the highest classification accuracy.

V. CONCLUSIONS

In this work we investigated whether RPs, an advanced
technique of nonlinear data analysis, which describe the
dynamic nature of a system can be applied on speech signals
and further, whether they can successfully used as a possible
indicator of Parkinson’s disease. We have processed long
duration time windows of voice signals through the recur-
rence plots theory, thus creating binary images which were

given as inputs to a DL architecture. The results obtained
prove that, the RPs constitute able and appropriate quantities
for the classification of PD patients and healthy controls
with high accuracy. It is worth to mention that, in terms of
our experimental analysis, we also examined the traditional
feature-based classification, i.e., we extracted the Recurrence
Quantification Analysis features and applied a SVM-based
classification. However, the resulted accuracy was not higher
than our proposed.

Nevertheless, it is important to note that the performance
of the model is highly dependent on the quality and size
of the dataset it is trained on, so it can generalize well to
new data. In the future, we aim to extend our analysis to the
evaluation of more speech tasks, rather than the ones con-
cerning the evaluation of the phonation, i.e., we will analyze
tasks which examine the articulation and prosody. Moreover,
the patients were in the ON-state of medication. Thus, we
could also examine the OFF-state as the medication affects
the motor PD symptoms, including the speech changes.
Therefore, it is possible that the speech recordings taken
from PD patients in the ON-state of medication may not
accurately reflect the true severity of their speech changes.
Finally, a possible extension of this work is to enhance our
analysis by introducing the Mel-Spectrograms to our pipeline
as they are widely used in the speech analysis field.
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