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Abstract— Lumbar spinal disc herniation is a disease in
which the protruding nucleus pulposus presses on the nerve due
to actions that place loads on the disc, causing pain in the lower
back and lower limbs. About 80% of treatments of disc herni-
ation are conservative treatments, and although it is necessary
to live with pain for a long time, there have been no studies that
clearly define the relationship between pain and biomechanical
parameters. In this study, we proposed a method of identifying
biomechanical parameters that predict posture-related pain in
patients with lumbar spinal disc herniation. The pain values
were quantitatively evaluated by the Numerical Rating Scale
(NRS) and the biomechanical parameters were analyzed by
OpenSim. Lasso regression was performed to narrow down the
biomechanical parameters that were related to pain and derive
the mathematical model of the relationship. Therefore, many
of the parameters of the obtained mathematical model were
related to the lumbar spine and were consistent with areas that
be related to lumbar spinal disc herniation.

Index Terms- Lumbar spinal disc herniation, back pain,
OpenSim, Lasso regression

I. INTRODUCTION

In the Global Burden of Disease Study, low back pain
ranks at the top of 289 diseases and injuries in the YLDs
(Years Lived with Disability), which measures the number
of years persons live in an unhealthy state [1]–[3]. More
than 80% of the population will experience an episode of
low back pain at some time during their lives [4]–[5]. One
of the causes of low back pain is lumbar disc herniation.
Statistics show that one-third of adults over the age of 20
have symptoms of herniated discs and 90% of herniation
occurs in the lumbar and lumbosacral regions of the spine
[6]. The intervertebral discs connect the spine and act as a
shock absorber cushion. The thick outer part is called the
annulus, and the inner gel-like part is called the nucleus.
Lumbar spinal disc herniation is a disease that occurs when
the annulus fibrosus cracks and the inner nucleus pulposus
protrudes due to external pressure and is particularly likely
to occur at the lumbar discs of L4-L5 and L5-S1 [6]–[7].
When the overload is applied to the intervertebral discs, the
protruding nucleus pulposus presses on the nerve and causes
pain. In addition to pain in the lower back, the pain may
extend to the entire lower extremities, and muscle weakness,
scoliosis, and nerve disorders occur. However, in about 80%
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of cases, the protruding nucleus pulposus is absorbed and
lumbar spinal disc herniation heals naturally if conservative
treatment like physical therapy is performed appropriately.

There have been many previous studies to detect lumbar
disc herniation from magnetic resonance imaging (MRI) data
[7]–[8]. In addition, some studies have focused on compres-
sive forces, since the load on the intervertebral disc is directly
related to symptoms. Studies on the relationship between
disc compressive force and postures provide information
on positions that patients should avoid [9]. In previous
studies, disc compression forces have been estimated from
various methods and sensors: back-mounted markers [10],
accelerometers and bending sensors [5] [11], stress analysis
using test body models [12], elastic models of the interver-
tebral discs [13], and modeling simulation software [14]–
[15]. There is also research on the exoskeleton that reduces
the disc compressive force on the intervertebral disc when
people lift heavy things [16]–[18]. These studies could lead
to the prevention of low back pain as well as to the recovery
of lumbar spinal disc herniation. Although it is necessary
to live with pain for a long time, no studies have clearly
defined the relationship between pain and biomechanical
parameters of patients with disc herniation. In addition, while
pain is an important factor in the diagnosis and treatment
of all diseases, it is still difficult to quantitatively evaluate
pain because it is a subjective sensation. In this study,
Lasso regression analysis was performed using quantitatively
assessed pain values and biomechanical parameters. As a
result, we were able to narrow down the biomechanical
parameters related to pain and derive a mathematical model.

II. METHODS

Symptoms of lumbar spinal disc herniation vary greatly
from person to person because various factors, such as the
position of the herniated disc, muscle forces around the disc,
and the patient’s living environment, are related to pain.
Therefore, we analyzed a subject. The subject has a herniated
disc between L4-L5 on the left lumbar vertebra for 4 years.
The sex, age, height and weight are 22 years old, 156.0 cm,
and 46 kg, respectively.

A. Pain Assessment

Pain assessment and calculating biomechanical parameters
are performed separately because the degree of pain varies
with physical condition and mood and is difficult to measure
simultaneously with biomechanical parameters. Numerical
Rating Scale (NRS) was used because it is simply a way
of rating or quantifying pain, even on different days and in
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different moods. It is an evaluation method that expresses
pain as a numerical scale from 0 to 10, where 0 is no
pain and 10 is the maximum imaginable pain [19]. The
pain was measured 12 times after a minute in each of the
10 postures (static standing, half sitting, crouching, sitting,
tiptoeing, trunk flexion, trunk extension, standing on one
leg, and bending knees). Since the degree of pain varies
depending on the state of the body at the time, it is difficult to
compare different postures using the average of the measured
values. Therefore, the difference in pain values between each
posture and the static standing posture was calculated based
on the pain value in the static standing posture, and the
average of the difference values for 12 times was calculated.
Table I shows the results of pain values for the 10 postures.

B. Calculating Biomechanical Parameters by OpenSim

To calculate biomechanical parameters, we used the mus-
culoskeletal model simulation software OpenSim. It is nec-
essary to measure marker data and floor reaction force data.
They were obtained using the motion capture system (from
VICON in Oxford, UK) and force plates (BP400600 from
Advanced Mechanical Technology, Inc. in Watertown, US).
The simulation model was based on the full body model
from Rajagopal et al. [20], and the markers were adjusted
manually so that they were placed in the Plug-in-Gait model
[21].The subject wore a suit with 39 markers and the marker
set is based on the Plug-in-Gait model [21]. Scaling was
performed in OpenSim to reproduce the subject’s physique
and to approximate the positions of the experimental markers
in the static standing posture to the marker positions in the
simulation model. First, the mass and length of the segments
were adjusted. The subject’s weight was used for mass.
The distance of the markers in the simulation model was
compared to the distance of the experimental markers in the
static standing posture, and the ratio of two lengths was then
used to create a model with the subject’s specific segment
lengths. Next, a weighting scheme was set to determine the
degree to which each simulation model marker matched the
experimental markers. Markers with small displacements,
such as those on bones, were given higher weights, while
markers on the thigh and lower leg were given lower weights.
In Fig. 1, the measured postures are reproduced on OpenSim
using data from the scaled model and the positions of the
experimental markers. Inverse kinematics, inverse dynamics,
static optimization, and joint reaction force calculations
resulted in 39 joint angle, 39 joint torque, 97 muscle force,
and 198 joint reaction force parameters.

C. Lasso Regression

Lasso regression analysis estimates the parameter values
that minimize the sum of the mean squared error and
weights to suppress overlearning [22]. Lasso regression
analysis which allows limiting the number of explanatory
variables was chosen because it is more practical to have
fewer biomechanical parameters in physical therapy. The loss
function J can be expressed in (1). The second term on
the right side of (1) is called the L1 normalization term,

TABLE I
RESULTS OF PAIN VALUES FOR THE 10 POSTURES

Posture Pain value
Static standing 0.00

Half sitting 0.750
Bending knees 0.417

Standing on right leg -0.167
Standing on left leg 1.75

Trunk extension 0.583
Sitting 1.42

Crouching 0.500
Tiptoeing 0.0833

Trunk flexion 2.75

TABLE II
THE POSTURES OF TEST DATA AND THE RESULT OF MEAN

SQUARED ERROR

i Test data Mean squared error Li

Llinearly Exponentially
1 Static standing 0.942 0.562
2 Half sitting 0.0168 0.0168
3 Bending knees 0.0560 0.0600
4 Standing on right leg 0.0308 0.0308
5 Standing on left leg 0.205 0.205
6 Trunk extension 0.129 0.129
7 Sitting 0.936 0.936
8 Crouching 0.427 0.305
9 Tiptoeing 0.885 0.676
10 Trunk flexion 6.51 6.31

which induces the weight coefficients to be 0 if the regression
model includes many variables with low predictive abilities.
Therefore, variables with high predictive abilities can be
clearly selected from among many explanatory variables and
the dimension can be compressed.

J =

n∑
i=1

(
y(i) − ŷ(i)

)2

+ λ

m∑
k=1

|wk| (1)

In (1), n is the number of data, m is the number of samples,
yi is the actual measured value of the i-th data, ŷi is the
predicted value of the i-th data, λ is the normalization
parameter and wk is the k-th weight coefficient.

Table II shows the postures of test data, parameter i, and
the result of Mean Squared Error (MSE). The 10 equations
obtained by repeating the Lasso regression analysis 10 times
with different test data are represented by (2) with x◦ as
the variable and a◦,i as the coefficient. When the posture
of the test data is changed, the variables and the number
of variables selected in each equation change. There are j
variables x◦, where j is the number of all variables selected
in the 10 equations. The coefficients of variables not used in
each equation are set to 0.

yi = a0,ix0+ a1,ix1+ a2,ix2+ · · ·+ aj−1,ixj−1+ aj,i (2)

III. MEASUREMENT OF BIOMECHANICAL PARAMETERS

Ten equations were combined into an equation. The fol-
lowing two methods were tried.



Fig. 1: Model reproduced in OpenSim

• Method 1: Taking the average of the coefficients
Table II shows that MSE is very large when the data
of trunk flexion is used as the test data. Therefore, we
averaged the 9 coefficients for each variable using the
9 equations other than the one using the data of trunk
flexion as the test data. The resulting equation is shown
in (3).

y =

9∑
i=1

a0,i

9
a0,ix0 +

9∑
i=1

a1,i

9
a1,ix1 + · · ·

+

9∑
i=1

aj−1,i

9
aj−1,ixj−1 +

9∑
i=1

aj,i

9
aj,i (3)

• Method 2: Using MSE Li as weights
The equation obtained so that the influence of the
equations with the smaller MSE is stronger is shown
in (4).

y =

1

L1
2

10∑
i=1

1

Li
2

y1 +

1

L2
2

10∑
i=1

1

Li
2

y2 + · · ·+

1

Li
2

10∑
i=1

1

Li
2

y10 (4)

Assuming that pain varies linearly or exponentially, the
number of explanatory variables could be narrowed down to
17 and 24, respectively. The variables and their coefficients
are shown in Table III and Table IV. The three axes in
OpenSim are shown in Fig. 2. The parameters with absolute

Fig. 2: Three axis on OpenSim

coefficients larger than 0.01 are assumed to have strong
effects as shown in gray. Assuming that pain varies linearly
and exponentially, the parameters are as follows: lumbar
rotation angle, left knee joint torque, right gluteus medius
muscle force, right gluteus minimus muscle force, left long
flexor digitorum longus muscle force, and left femur (hip
side) joint reaction force. Assuming that pain varied linearly,
left talus joint reaction force was also included. Fig. 3
shows scatter plots between measured and predicted pain
values. The results for the tiptoeing posture were outliers,
but the results for the other postures showed high predictive
accuracy, regardless of how the pain varied and how the
10 equations were combined. In the present analysis, no
significant differences were found between the two methods.
More analysis data is needed to clarify the characteristics of
each method.

IV. RESULTS AND DISCUSSION

Table III and Table IV show that the variables narrowed
down by Lasso regression analysis were more common
around the lumbar spine, although some variables were
obtained for areas distant from the lumbar spine, such as
the ulna. In addition, among the biomechanical parameters
shown in gray, the parameters of the lumbar rotation angle
the and the gluteus medius and minimus muscle forces,
which are involved in stabilizing the pelvis during standing
and walking, are ideal parameters that be related to a lumbar
spinal disc herniation. Furthermore, Fig. 3 shows a high
correlation between the measured and predicted pain values.
These findings indicate that a mathematical model including
the lumbar spine angle and the gluteus medius and minimus
muscle forces might predict posture-related pain.

This study had three limitations. First, the number of
subjects was limited. By analyzing data from more subjects,
different biomechanical parameters could be identified as
posture-related features. Second, this study used only Lasso
regression and did not compare the results with other regres-
sion models. Adapting multiple regression models to data
from a larger number of subjects and measuring the validity
of the features is needed in the future. Finally, this study did
not measure pain during daily life. Posture-related pain could
vary from day to day. Therefore, it is a future challenge to
verify whether the identified parameters can also predict pain
during daily life by utilizing IoT sensors.



TABLE III
COEFFICIENTS AND VARIABLES ASSUMING LINEAR VARIATION IN PAIN

Coefficients VariablesMethod 1 Method 2

a0 −7.10×10−4 −1.47×10−6 x0 Angle of pelvis z-axis
a1 0.00 1.08×10−6 x1 Angle of hip rotation
a2 −1.53×10−1 −1.84×10−1 x2 Angle of lumbar rotation
a3 −3.41×10−1 −3.55×10−1 x3 Left knee joint torque
a4 2.78×10−2 2.13×10−3 x4 Right gastrocnemius muscle force
a5 1.59×10−2 9.13×10−5 x5 Left gastrocnemius muscle force
a6 −2.22×10−1 −2.29×10−1 x6 Right gluteus medius muscle force
a7 −9.93×10−2 −1.15×10−1 x7 Right gluteus minimus muscle force
a8 9.80×10−2 1.37×10−1 x8 Left flexor digitorum longus muscle force
a9 0.00 −6.95×10−7 x9 Left piriformis muscle force
a10 1.69×10−3 6.68×10−6 x10 Left soleus muscle force
a11 0.00 1.55×10−7 x11 Right suture muscle force
a12 4.69×10−2 3.04×10−2 x12 Y-component of joint reaction force on the left femur (hip side)
a13 0.00 2.03×10−7 x13 Y-component of joint reaction force on the left tibia (knee side)
a14 −7.28×10−2 −7.33×10−2 x14 Y-component of joint reaction force on the left talus
a15 1.99×10−2 1.54×10−4 x15 Y-component of joint reaction force on the right ulna
a16 0.00 −6.99×10−7 x16 X-component of joint reaction force on the left ulna
a17 8.22×10−1 8.16×10−1

TABLE IV
COEFFICIENTS AND VARIABLES ASSUMING EXPONENTIAL PAIN

Coefficients VariablesMethod 1 Method 2

a0 −2.33×10−3 −3.68×10−6 x0 Angle of pelvis z-axis
a1 4.11×10−3 2.52×10−3 x1 Angle of pelvis rotation
a2 0.00 6.50×10−7 x2 Angle of hip rotation
a3 −3.26×10−2 −3.38×10−2 x3 Angle of lumbar rotation
a4 −8.75×10−2 −8.12×10−2 x4 Left knee joint torque
a5 0.00 2.51×10−7 x5 Left elbow joint torque
a6 6.19×10−3 3.18×10−3 x6 Left ankle joint torque
a7 1.69×10−3 2.66×10−6 x7 Right gastrocnemius muscle force
a8 −2.53×10−2 −2.58×10−2 x8 Right gluteus medius muscle force
a9 −7.57×10−4 −2.55×10−4 x9 Left gluteus medius muscle force
a10 −3.16×10−2 −4.47×10−2 x10 Right gluteus minimus muscle force
a11 3.32×10−2 4.27×10−2 x11 Left flexor digitorum longus muscle force
a12 0.00 −5.37×10−7 x12 Left piriformis muscle force
a13 −2.32×10−3 −6.80×10−3 x13 Right greater adductor muscle force
a14 −3.45×10−3 −6.46×10−5 x14 Right iliopsoas muscle force
a15 7.34×10−4 1.94×10−6 x15 Right suture muscle force
a16 2.27×10−2 3.39×10−2 x16 Y-component of joint reaction force on the left femur (hip side)
a17 0.00 −1.02×10−8 x17 Z-component of joint reaction force on the right tibia (knee side)
a18 0.00 1.24×10−7 x18 Z-component of joint reaction force on the left tibia (knee side)
a19 3.96×10−4 1.05×10−6 x19 Z-component of joint reaction force on the right talus
a20 2.47×10−3 −1.54×10−3 x20 Y-component of joint reaction force on the left talus
a21 1.14×10−3 2.41×10−5 x21 Z-component of joint reaction force on the left talus
a22 5.58×10−3 8.77×10−6 x22 Y-component of joint reaction force on the right ulna
a23 0.00 1.73×10−7 x23 Z-component of joint reaction force on the left ulna
a24 2.14×10−1 2.15×10−1

V. CONCLUSIONS

In this study, we proposed a method of Lasso regres-
sion analysis using quantitatively evaluated pain values and
biomechanical parameters obtained by OpenSim to iden-
tify the relationship between pain caused by postures and
biomechanical parameters. As a result, we were able to find
biomechanical parameters that were related to pain. This
research finding can contribute to the treatment of patients
with lumbar spinal disc herniation to avoid posture-related
pain.



Fig. 3: Scatter plots depicting the relationship between the measured and predicted pain values
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