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Abstract— The development of continuous glucose monitoring
(CGM) systems has enabled people with type 1 diabetes mellitus
(T1DM) to track their glucose trajectory in real-time and in-
spired research in personalised glucose prediction. In this paper,
our aim is to predict postprandial abnormal-glycemia events.
Different from prior research which focuses on hypoglycemia
only, we make the first attempt to establish our problem as
the joint prediction of hyperglycemia and hypoglycemia. On
this basis, we propose a machine learning model that learns
from the pattern of 1 hour past glucose and makes predictions
for the two tasks simultaneously using a unified backbone.
Key benefits of our methodology include 1) requiring only
the CGM sequence as the input, thus making it more widely
applicable than other counterparts using extra inputs such as the
nutrition details, and 2) minimising the computational cost as
the two tasks are unified into a single model. Our experiments
on the openly available OhioT1DM dataset achieve state-of-
the-art performance (Matthew’s correlation coefficient of 0.61
for hyperglycemia and 0.48 for hypoglycemia). To encourage
further study, we release our codes at https://github.com/
r-cui/PostprandialHyperHypoPrediction under the
MIT license.

I. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is a chronic metabolic
disorder affecting millions of people globally. Many people
with T1DM wear continuous glucose monitoring (CGM)
devices to constantly track their glucose trajectory [1], and
personalised glucose prediction using machine learning (ML)
on CGM data has drawn significant research attention [2],
[3].

To date, the most straightforward setting of glucose
prediction is short-term glucose prediction [4]–[9]. In this
setting, a model is trained and evaluated using the full set of
CGM data, and the learning target is to accurately predict the
glucose value at a fixed horizon such as 30 or 60 minutes using
recent glucose-related information as the input. However,
glucose presents different patterns during the day. As shown in
Figure 1, under the effect of food, postprandial glucose usually
has a pattern from rising to declining that differs from other
times such as the nocturnal glucose, which is relatively stable.
Table I shows a statistical comparison of postprandial 4-hour
glucose with glucose at other times using the OhioT1DM
dataset [10]. The two-sample Kolmogorov–Smirnov (KS)
tests [11] on all patients achieve a p-value less than 0.05,

1School of Computing, The Australian National University, Canberra,
Australia

2School of Medicine and Psychology, The Australian National University,
Canberra, Australia

3Department of Computing, University of Turku, Turku, Finland
ran.cui, christopher.nolan, eleni.daskalaki,

hanna.suominen@anu.edu.au

50

100

150

200

Hyper

Hypo

2hmeal 4h-1h

food insulin bolusCGM reading

Fig. 1. A snippet of T1DM patient’s real-life CGM data around a meal.
This example shows a typical postprandial glucose pattern: the digestion of
food causes glucose to peak, followed by its falling to a valley under the
effect of natural metabolism and meal-corresponded insulin. Consequently,
hyperglycemia and hypoglycemia are both risky in postprandial times.

indicating their difference in probability distribution. This
evidence suggests the potential of glucose prediction in a
finer granularity, and, in this study, we specifically target the
postprandial scenario.

Prior research has mainly approached postprandial glucose
prediction from two directions, namely prediction at meal time
[12]–[15] and prediction in fixed horizon [16], [17]. Meal-time
prediction considers a pre-defined meal effective time range
such as 4 hours after the meal, and all predictions regarding
the time range are made at once at the meal time. This scheme
reflects the application that the patient could re-plan the meal
advised by the prediction result, e.g., adjust the planned
food quantity or insulin amount. Although the envisaged
application is of great value, a natural disadvantage of this
scheme is that it cannot take factors after the meal intake
into consideration. As illustrated in Figure 1, other meals and
insulin intake events could be present at the patient’s wish in
real life, rendering the meal-time prediction inaccurate under
such circumstances. In contrast, the fixed prediction horizon
scheme considers a shorter prediction horizon such as 30 or
60 minutes, and the prediction is rolling starting right after
the meal time until it covers all the meal effective time range.
This scheme corresponds to the application that once a meal
event is announced by the patient, the algorithm constantly
runs to predict glucose for a short future, such that later
events that reflect on glucose profile can be accommodated.
Although having a shorter prediction horizon than the meal-
time prediction scheme, the application of fixed horizon
prediction is more flexible.

This work is licensed under a Creative Commons Attribution 3.0 License. 
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TABLE I
DISTRIBUTION IN THE FORMAT OF MEAN(STD) OF POSTPRANDIAL 4-HOUR CGM DATA AND OTHER CGM DATA IN THE OHIOT1DM DATASET, AND

TWO-SAMPLE KOLMOGOROV–SMIRNOV (KS) TESTS PER PATIENT.

Patient ID 540 544 552 584 596 559 563 570 575 588 591
Postprandial 4h CGM 139.7 (60.7) 183.5 (59.5) 145.3 (55.7) 186.1 (64.2) 147.9 (51.1) 173.8 (72.8) 149.8 (51.3) 181.1 (66.2) 137.3 (62.3) 163.5 (55.3) 151.2 (57.9)
Other CGM 136.0 (53.2) 142.5 (52.7) 147.2 (54.0) 195.4 (65.7) 142.7 (46.0) 155.1 (66.6) 142.8 (48.3) 192.8 (56.7) 142.0 (56.9) 164.2 (47.7) 158.1 (58.2)
KS Test p < 0.05 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In this study, we aim to design and develop a strategy
for the prediction of postprandial abnormal-glycemia events
under the fixed horizon prediction scheme. Specifically, we
propose a problem formulation under the fixed prediction
horizon scheme in which the prediction target is set to both
postprandial hyperglycemia and hypoglycemia instead of only
one of them as in previous studies [12], [13], [17]. The two
targets are annotated simply by two distinctive configurations
of time zones and thresholds (Figure 1) according to clinical
suggestions [18], [19], so this expansion does not add extra
complexity to the problem. Under our problem formulation,
we propose a long short-term memory (LSTM) [20] based
model that uses the 1-hour past CGM pattern to learn to
predict the near future. Instead of separately obtaining two
models for the two tasks (hypo-, hyper-glycemia), our method
uses a single LSTM backbone to handle the temporal feature
extraction for both tasks, thus the need for computational
resources in both training and inference is minimised. As
the envisaged user scenario is that the user notifies the
system of entering the postprandial stage after each meal and
the system constantly runs the prediction, we consider this
optimisation important for running on mobile or low-power
devices. As a reflection of the recent initiative of data sharing
in this field [21], we evaluate our proposed methodology
on the openly available OhioT1DM dataset [10] collected
in everyday settings. Though there exist differences in the
data used by different studies, our experiments achieve state-
of-the-art results compared to existing literature. Moreover,
to further study the effect of the aforementioned glucose
distribution shift in postprandial scenario, we conduct an
ablation experiment in which we train the model on the
whole CGM dataset. The resulting performance deterioration
and 10-fold increase of training process indicate that treating
postprandial glucose prediction separately is indeed a valid
approach that should be further pursued.

The contributions of our study are summarised as follows:

• To the best of our knowledge, we are the first to formulate
the problem of jointly predicting postprandial hyper-
glycemia and hypoglycemia in the field of postprandial
glucose prediction.

• We propose a ML approach that unifies the two pre-
diction tasks into one single model so that the need
for computational resources is minimised. It achieves
state-of-the-art prediction quality compared to existing
studies.

• Our statistical analysis and ablation study verify the
impact of the glucose distribution shift problem in
postprandial glucose prediction.

II. RELATED WORKS

Our study sits in the cross-domain of short-term glucose
prediction and postprandial glucose prediction. Thus, we
review related existing research in both fields.1

A. Short-Term Glucose Prediction

We refer to short-term glucose prediction [4]–[9] as the
research field of predicting the glucose value at a fixed
prediction horizon ranging from 15 to 120 minutes using
recent glucose-related information as input, including CGM
recordings, carbohydrates intake and insulin delivery. To date,
most of these studies were evaluated on openly available
datasets such as OhioT1DM [10] in purpose of finding better
methodology enabled by open performance comparison. Deep
learning models have been recently shown to be widely
effective on this problem, such as recurrent neural networks
(RNN) [9], dilated convolution neural networks (CNN) [7],
multi-scale LSTM [8], and self-attention [6].

However, research on this topic was mostly designed
and evaluated using all available CGM data. As discussed
in the introduction, the unique distribution and pattern of
postprandial glucose suggest the potential of distinguishing
different scenarios in a day which is inadequately investigated
in this field.

B. Postprandial Glucose Prediction

We refer to postprandial glucose prediction [12]–[17] as
the research field of glucose prediction or hyperglycemia
(hypoglycemia) prediction that targets only the postprandial
scenario, using either only CGM recording or combine with
meal information such as the nutrition components. Research
in this field can be classified into two categories differing
in whether the prediction is made at the meal time at once
or is constantly made with a fixed prediction horizon. For
the first category, [12], [13] studied meal-time prediction of
postprandial hypoglycemia in 4 hours after the meal and their
state-of-the-art performance was 0.48 in Matthew’s correlation
coefficient. Different in the prediction target, [14] studied meal
time prediction of the full excursion of 2 hours postprandial
glucose, and [15] studied the meal-time prediction of several
features such as the area under curve of 2 hours postprandial
and glucose value at 1 hour postprandial that could reveal
the future trend of postprandial glucose. However, a natural
inadequacy of meal-time prediction is that it is unable to
accommodate a dynamic future, such as another meal or
extra insulin intake in the meal effective time range as the
patient may wish. On the other hand, the second category in

1For more comprehensive reviews of glucose prediction, we refer the
readers to [2], [3].
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Fig. 2. The illustration of our examples extraction. Taking hyperglycemia for illustration, an anchor started to increment from the first timestamp in the red
zone, and a corresponding example was generated at each incrementing step until it arrived just before the occurrence of a hyperglycemia event. The
extraction of hypoglycemia was of a similar manner as illustrated in the blue zone.

this field follows the constant prediction strategy using fixed
prediction horizon. In this category, [16] studied the use of
nutrition absorption models in predicting the glucose value at
1 hour. [17] explored prediction of postprandial hypoglycemia
in 30 minutes using random forest classification model and
achieved 0.9 sensitivity and 0.9 specificity with a cost of 0.7
false alarm rate.

Our study is in relation to short-term glucose prediction
as we follow the fixed prediction horizon strategy, but with
a focus on postprandial data only. Moreover, our study is
in line with the second category of postprandial glucose
prediction, but targeting the joint prediction of postprandial
hyperglycemia and hypoglycemia, and relying on only the
CGM sequence which circumvents extra burdens such as
estimating meal carbohydrates [22], [23].

III. PROPOSED METHOD

We present our formulation of postprandial hyperglycemia
and hypoglycemia prediction in Section III-A, and the rest of
Section III constitutes the description of our ML methodology
for this problem.

A. Problem Formulation

Under the configuration of the sampling rate being 5
minutes, we set our prediction horizon to be 30 minutes
(6 data points). In accordance with clinical consensus [18],
[19], we consider 0-2 hours and 2-4 hours after the meal to
be the effective time range for the two tasks of postprandial
hyperglycemia and hypoglycemia, respectively. Under this
configuration, the 4-hour postprandial glucose trajectory,
denoted by g = [g1,g2, ...,g48], was our source of examples
extraction for a meal at the time of sample g0. Specifically, for
each task, we applied a moving anchor i starting at the first
index of its time range. A new example (i,yi) was generated
each time the anchor incremented until the prediction horizon
moved to the last 6 data points in the time range. To this

Algorithm 1 Pseudo Codes for Extracting Train/Test Exam-
ples from a Meal.

1: Input: g, t ▷ CGM sequence, meal time
2: Initialise ph = 6 ▷ prediction horizon: 0.5 h
3:
4: Case 1: hyperglycemia
5: Initialise thres = 180
6: Initialise T = [1,2, ...,18] ▷ 0-2 h
7: procedure EXTRACTDATA(g, t)
8: data = []
9: for i in T do

10: if gt+i ≥ thres then
11: break
12: end if
13: if two consecutive in g(t+i+1):(t+i+ph) ≥ thres then
14: y = True
15: else
16: y = False
17: end if
18: push tuple (t, i, y) to data
19: end for
20: return data
21: end procedure
22:
23: Case 2: hypoglycemia
24: Initialise thres = 70
25: Initialise T = [25,26, ...,42] ▷ 2-4 h
26: procedure EXTRACTDATA(g, t)
27: Change ≥ to ≤ in line 10 and 13.
28: end procedure

end, the anchor i took a default range in

hyperglycemia {i ∈ N : 1 ≤ i ≤ 18}, (1)
hypoglycemia {i ∈ N : 25 ≤ i ≤ 42}. (2)

We defined that a hyperglycemia (hypoglycemia) event
occurred if at least two consecutive data points in the
prediction horizon crossed the threshold of 180 mg/dL (70
mg/dL) [24]. Consequently, the label yi was a binary value
determining by if such event occurred in the prediction
horizon gi+1:i+6.

On this basis, an early stopping criterion in the incremental



process of the anchor i was applied: the increment of i early
stopped at the last point before an event of interest being
present (Figure 2). This was to reflect that the prediction
corresponding to a certain meal was no longer required once
the meal already caused a hyperglycemia (hypoglycemia). By
repeating the procedure described above on all meals, the
full postprandial dataset could be constructed using the raw
personalised CGM data. Such dataset was in line with the
fixed-horizon prediction research as reviewed in Section II-B.
A pseudo code snippet for this training and testing examples
generation is shown in Algorithm 1.

B. Classification to Regression

Under this problem formulation, a central idea of our
methodology was to change the natural binary classification
setup adopted by previous studies [12], [13], [17] into an
approximated regression scheme. More specifically, instead of
directly making a prediction of the binary yi, we let our model
learn to predict a numerical value of the max (min) glucose
value in the prediction horizon, then the binary decision was
made via the threshold 180 mg/dL (70 mg/dL). Although
this translation was not exactly equivalent to the definition
of two-consecutive points crossing the threshold, we adopt
this scheme for its stronger supervision to the model training,
because the binary supervision would lose the information
of the severity of the hyperglycemia (hypoglycemia) event.
Moreover, as the events tend to be rare or even do not present
at all (especially for hypoglycemia), the example distribution
tends to be significantly imbalanced. Our regression scheme
also naturally avoided the need of dealing with the imbalanced
class problem, such as choosing a proper class weighting in
classification loss.

C. Unified Model and Joint Training for Hyperglycemia and
Hypoglycemia

As the definition of hyperglycemia and hypoglycemia only
differed in the threshold and time range, we approached the
two tasks simultaneously using a unified model structure
which took the recent glucose pattern as input. To be specific,
we used the 1-hour recent CGM sequence gi−11:i as the input
and left out all other factors such as the meal and insulin
amount in consideration of the difficulty of obtaining reliable
meal amount estimation [25] and that the data may not be
sufficiently large to capture the personalised effect of insulin.
To encode the sequential feature, we fed the input 1-hour
CGM sequence into an LSTM [20] backbone with hidden
dimension D followed by a Rectified Linear Unit (ReLU)
activation function [26]. The last hidden state h of the LSTM,
given by

h = max(LSTM(gi−11:i),0) ∈ RD, (3)

was regarded as the encoded feature vector of the input CGM
sequence. The LSTM backbone was followed by two linear
heads, which took the identical h as the input, but were
respectively responsible for the prediction of hyperglycemia
and hypoglycemia. To reflect our regression scheme described
in Section III-B, the two linear heads projected h to two

numerical outputs that respectively corresponded to the
maximum and minimum glucose in the prediction horizon.
The two predictions were given by

ĝhyper = Whyper ·h+bhyper ∈ R, (4)
ĝhypo = Whypo ·h+bhypo ∈ R, (5)

where W ∈ RD and b ∈ R represented the canonical linear
weight and bias term in a linear projection, respectively.

Finally, mean squared error (MSE) loss between the
predicted value and the ground truth was employed in
supervising the model training, given by

Lhyper =
1
M

M

∑(ĝhyper −maxgi+1:i+6)
2, (6)

Lhypo =
1
N

N

∑(ĝhypo −mingi+1:i+6)
2, (7)

where M and N denote the total number of training examples
extracted for hyperglycemia and hypoglycemia, respectively.

As the two linear heads shared the same hidden state h as
the input, the LSTM was encouraged to learn the temporal
trend of the recent glucose without bias towards either task,
such as predicting a high glucose value for hyperglycemia or
a low glucose value for hypoglycemia. To promote this in the
training process, in each training iteration, a hyperglycemia
batch and a hypoglycemia batch were independently fed to
the model, and the model was alternatively updated using the
corresponding loss (i.e., Lhyper or Lhypo, depending on the
task of that batch). As will be shown in our ablation study in
Section IV-E, our jointly designed methodology for the two
tasks hyperglycemia and hypoglycemia achieved comparable
performance to the default option of independently training
two models for the two tasks, yet half of the computational
resources was saved.

IV. EXPERIMENTS

A. Dataset

We evaluated our proposed method for predicting post-
prandial hyperglycemia and hypoglycemia using the publicly
available dataset OhioT1DM [10] created by the US Ohio
University. This dataset contained eight weeks of data from
CGM devices, self-reported insulin intake information and
meal events for 12 T1DM patients. We made use of the CGM
recordings and followed the train/test split officially defined
by the author of the dataset in evaluating our method, in
which the test set comprised around ten days of data for
each patient2. Ethical approval (2020/411) was obtained from
the Human Research Ethics Committee of The Australian
National University to use de-identified data for this study.

B. Evaluation Method

In evaluating the performance of our proposed methodology,
we evaluated the root mean square error (RMSE) for our re-
gression output in accordance with existing studies in general
glucose prediction, and further evaluated the sensitivity (SE),

2In the raw dataset, the patient with ID 567 provided no meal information
in the test split, so we excluded this patient from our experiments.



TABLE II
MAIN PERFORMANCE COMPARISON IN THE FORMAT OF MEAN (STD) OVER 10 REPEATED EXPERIMENTS WITH DIFFERENT RANDOM SEEDS. BOLD

SCORES WERE STATISTICALLY SIGNIFICANTLY BETTER (p < 0.05) THAN ALL BASELINES VIA THE UNPAIRED T TEST.

Hyperglycemia Hypoglycemia
RMSE↓ SE↑ SP↑ FA↓ MCC↑ DT↑ RMSE↓ SE↑ SP↑ FA↓ MCC↑ DT↑

Short-Term - [4] 19.08 - - - - - 19.08 - - - - -
Short-Term - [5] 18.93 - - - - - 18.93 - - - - -
Short-Term - [6] 17.97 - - - - - 17.97 - - - - -
Postprandial - [17] - - - - - - - 0.90 0.91 0.70 - 25.5

(0.03) (0.02) (0.04) (1.97)
Postprandial - [13] - - - - - - - 0.69 0.8 - 0.24 -
Postprandial - [12] - - - - - - - 0.71 0.79 - 0.48 -
[17] Replicated - 0.83 0.81 0.58 0.50 19.28 - 0.82 0.94 0.85 0.34 19.4

(0.01) (0.00) (0.01) (0.00) (0.23) (0.00) (0.00) (0.00) (0.01) (0.00)
Baseline - Dummy 27.01 0.03 1.00 0.00 0.15 5.00 17.44 0.05 1.00 0.40 0.17 5.00
Baseline - AdaBoost 22.03 0.71 0.88 0.46 0.53 16.53 17.42 0.07 1.00 0.70 0.13 10.25

(0.07) (0.01) (0.01) (0.01) (0.01) (0.28) (0.14) (0.02) (0.00) (0.09) (0.03) (2.36)
Baseline - Random Forest 19.45 0.58 0.94 0.33 0.55 14.65 14.14 0.31 1.00 0.48 0.39 8.93

(0.04) (0.01) (0.00) (0.01) (0.01) (0.19) (0.02) (0.01) (0.00) (0.01) (0.01) (0.23)
Baseline - MLP 18.79 0.57 0.94 0.33 0.55 14.79 13.23 0.38 0.99 0.51 0.42 8.94

(0.21) (0.01) (0.00) (0.01) (0.01) (0.28) (0.19) (0.05) (0.00) (0.04) (0.02) (1.54)
Ours 18.23 0.66 0.95 0.33 0.61 15.01 13.25 0.48 0.99 0.50 0.48 10.97

(0.35) (0.04) (0.01) (0.03) (0.02) (0.98) (0.17) (0.05) (0.01) (0.05) (0.02) (0.89)

specificity (SP), false alarm rate (FA) which were calculated
out of the confusion matrix for the final classification. We
also included Matthew’s correlation coefficient (MCC) as
an overall reflection of the classification result. Additionally,
to evaluate the timeliness of our prediction, we calculated
the detection time (DT) of the start of a hyperglycemia
or hypoglycemia event averaged over the meals that were
correctly predicted by our algorithm. In these metrics, MCC
took values in [−1,1] to reflect the overall classification
quality and others in [0,1], larger (smaller) values reflected
better performance for SE, SP, and MCC (FA). For DT, the
theoretically optimal value was 30 minutes as it was our
preset prediction horizon.

C. Implementation Details

Due to the small size of the patient cohort, we trained
personalised model for each patient in our experiments. The
full training and evaluation were implemented using PyTorch.
Normalisation was applied to all CGM data using mean and
standard deviation estimated via training data. In the model
configuration, we applied a uni-layer LSTM with hidden
dimension D = 50, resulting in the full model containing
around 10k trainable parameters. The model was tuned
using Adam optimiser [27] with batch size 64 and learning
rate of 0.001 under a gradient norm clipping at 1.0. To
illustrate the computational efficiency under this configuration,
each training step took around 0.01 seconds, and the full
training pipeline for all 11 patients in OhioT1DM dataset
took around 4 minutes on an Apple M1 CPU. As the amount
of personalised postprandial CGM data was limited, instead
of using hold-out training data as a validation set and conduct
model selection, we trained our model on the full training
data and fixed the training epochs to 50. To enable statistical
significance testing, we repeated all experiments 10 times
with different random seeds, and reported the averaged scores
and their standard deviation in all tables.

D. Results

As shown in Table II, we compared our proposed method
to state-of-the-art studies in the short-term glucose prediction
field (Section II-A) and the postprandial glucose prediction
field (Section II-B). Moreover, the main body of our compar-
ison was our own implementation of several baselines using
traditional ML algorithms.

a) Comparing to Short-Term Glucose Prediction Studies:
As shown in the first section of Table II, the studies [4]–[6]
were all conducted using the same OhioT1DM dataset while
evaluated using RMSE between the actual and predicted
glucose value without including the other metrics used in our
study as the prediction of abnormal-glycemia events was out
of their scope. For RMSE, our study was slightly different to
these studies as our regression target was the max and min
glucose in the next 30 minutes instead of the exact glucose
at 30 minutes ahead. However, our methodology achieved a
comparable RMSE to these studies when predicting hyper-
glycemia and an RMSE significantly better than these studies
when predicting hypoglycemia, suggesting a performance no
lower than the methodologies proposed in these studies if
applied to our task.

b) Comparing to Postprandial Glucose Prediction Stud-
ies: Among the postprandial glucose prediction studies in
our performance comparison in the second section of Table
II, [17] followed the fixed prediction horizon scheme with a
30-minute prediction horizon, while [12], [13] adopted the
meal-time prediction scheme. These studies were conducted
on datasets unavailable to the community due to restrictions
of the clinical trials, which made our comparison less
straightforward. However, though a lower DT was presented,
our study achieved the state-of-the-art MCC, indicating an
promising overall performance of our prediction.

c) Comparing to Our Implemented Baselines: To en-
hance the comparative assessment, we replicated the method-
ology proposed in [17] and implemented several classical



TABLE III
ABLATION EXPERIMENTS IN THE FORMAT OF MEAN(STD) OVER 10 REPEATED EXPERIMENTS WITH DIFFERENT RANDOM SEEDS.

Hyperglycemia Hypoglycemia
RMSE↓ SE↑ SP↑ FA↓ MCC↑ DT↑ RMSE↓ SE↑ SP↑ FA↓ MCC↑ DT↑

Individual Training 18.64 0.64 0.96 0.29 0.62 14.22 13.50 0.40 1.00 0.47 0.45 10.13
(0.14) (0.01) (0.01) (0.02) (0.01) (0.28) (0.08) (0.05) (0.00) (0.05) (0.03) (0.79)

Binary Supervision - 0.80 0.80 0.60 0.47 18.11 - 0.70 0.90 0.90 0.24 15.7
(0.02) (0.01) (0.01) (0.01) (0.54) (0.06) (0.05) (0.04) (0.06) (0.80)

Short-Term Training 19.67 0.51 0.97 0.25 0.57 11.71 12.88 0.30 1.00 0.52 0.37 7.13
(0.21) (0.02) (0.01) (0.02) (0.01) (0.38) (0.15) (0.04) (0.01) (0.09) (0.03) (0.98)

Ours 18.23 0.66 0.95 0.33 0.61 15.01 13.25 0.48 0.99 0.50 0.48 10.97
(0.35) (0.04) (0.01) (0.03) (0.02) (0.98) (0.17) (0.05) (0.01) (0.05) (0.02) (0.89)

ML algorithms as shown in the third section of Table II. All
results here were based on the same dataset and experimental
conditions. To be specific, we first implemented a dummy
model, which simply treated the most recent known glucose
value as the regression output ĝhyper and ĝhypo. As the dummy
model had no ability to learn anything, no 10-fold experiment
was conducted. This model was used to set up the theoretical
lower bound of performance and to show that other methods
had the learning ability to an extent. On this basis, we
implemented several traditional regression algorithms, namely
random forest (RF), AdaBoost, and multi-layer perceptron
(MLP) using the same 1-hour past CGM sequence as input,
and further replicated the methodology proposed by [17]
which was an RF model using explicit features calculated
out of the past CGM. In comparison with these baseline
strategies, our methodology achieved the highest MCC and
lowest RMSE, and comparable performance on other metrics.

d) Discussion: In the OhioT1DM dataset, postprandial
hyperglycemia happened around 5 times more often than
hypoglycemia which coincides with hypoglycemia usually
causing more severe and acute symptoms than hyperglycemia,
leading to T1DM patients being more cautious in preventing
hypoglycemia. The more significant class imbalance problem
in hypoglycemia data caused an overall worse performance in
hypoglycemia prediction task (0.13 in MCC). However, this
performance gap implied a possibility of having hypoglycemia
prediction performance comparable to hyperglycemia predic-
tion by collecting more data as the two tasks only differed
in the threshold and time range. Besides, we observed the
positive correlation between SE and FA and the trade-off
between FA and DT. These observations were understandable
because a higher SE indicated a higher tendency of the model
to predict the presence of an event, which would also increase
the FA. Since the DT was determined by the earliest detection
of the event, the more often predicted events would also
achieve a better DT. We achieved an average DT of 15
minutes for hyperglycemia and 11 minutes for hypoglycemia.
Due to that rapid-acting insulin can be effective in 10-15
minutes [28], and the 20-minute expected recovery time of
hypoglycemia [29], we consider our achieved DT to be a
promising performance in practical application.

E. Ablation Studies

To further evaluate the validity of our method, we con-
ducted three ablation studies targeting on different arguments

in our method (Table III).
a) Individual Training: This ablation experiment aimed

at investigating the validity of our joint model for hyper-
glycemia and hypoglycemia against treating the two tasks
separately. Thus, instead of training the model alternatively
using data from the two tasks, we trained and evaluated two
models individually. In comparing our main experiment to
the first row of Table III, our unified model achieved results
close to the individual training scheme in all metrics. This
observation suggested the capability of the shared LSTM
backbone to properly encode the temporal feature of the
input glucose history which was then used for prediction on
the two tasks. By unifying the two tasks into one model,
we minimised the need for computational resources both in
inference time and memory requirement.

b) Binary Supervision: Different from previous studies
[12], [13], [17], our method approached the classification
output in the way of translating the predicted max or min
glucose in the prediction horizon to binary result using
the defined thresholds. To investigate its effectiveness, we
conducted the ablation study of applying binary supervision.
More specifically, we changed the output module of our model
to a binary classification layer, and the training was supervised
by cross-entropy loss with class weights estimated via the
class distribution in training data. As shown in the second
row of Table III, though the DT was increased, this training
strategy led to almost double FA and caused a significant drop
of overall predictive performance (∼12% MCC), indicating
the numerical supervision being more effective.

c) Short-Term Training: In this study, we treated post-
prandial glucose prediction in separate to general glucose
prediction due to the distribution shift from postprandial
glucose to overall glucose as shown in Figure 1 and Table
I. To further investigate the effectiveness of this decision,
we conducted the ablation experiment of training the model
using examples extracted from full CGM data which was
consistent to the setting of short-term glucose prediction, yet
the testing data were kept unchanged as only postprandial.
As can be seen from the third row of Table III, this change
not only did not help on increasing the overall performance,
but rather caused a deterioration in both the MCC and DT.
Additionally, the full training data were approximately of 10
times larger amount than postprandial training data, meaning
that invoking a large amount of less relevant training data
had only misled the learning.



V. LIMITATION AND FUTURE WORK

One limitation of this study is that we did not include
meal-related factors such as carbohydrate amount and insulin
dosing into our model. Discussing the trade-off between
1) simpler input leads to better applicability, and 2) more
complex input provides more potential for better performance,
is a good topic for future research. Moreover, future research
in direction of a long-term learning model that continuously
improves itself using newly collected data from daily life is
of great value.

VI. CONCLUSION

This study identifies the distribution shift of glucose data
in the postprandial scenario, and focuses on the problem of
postprandial hyperglycemia and hypoglycemia prediction. For
the first time we formulate the problem of joint prediction of
postprandial hyperglycemia and hypoglycemia. On this basis,
we propose a unified ML model that handles the two tasks
together and can learn from the glucose pattern only without
the need for additional inputs such as meal nutrition in detail.
Our experiments on the OhioT1DM dataset achieve state-of-
the-art capability to predict postprandial hyperglycemia and
hypoglycemia in comparison with existing studies.
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