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Abstract— The blood-oxygen-level-dependent (BOLD) signal
measured by functional magnetic resonance imaging (fMRI)
is modulated by neural activity through the neurovascular
coupling effect, as well as non-neural factors of physiological
origin such as heart rate, respiration, and arterial blood pres-
sure (ABP). While the former two effects have been previously
characterized, the modulation of the BOLD signal by ABP
fluctuations is still poorly understood. This is largely due to
the difficulty of obtaining reliable ABP measurements in the
MRI environment. Here, we propose a combined experimental
and mathematical modeling framework to estimate ABP fluc-
tuations inside the MRI scanner using photoplethysmography
(PPG). Specifically, we used concurrent PPG and ABP measure-
ments obtained outside the scanner to train the mathematical
model and applied it to PPG measurements obtained inside the
MRI scanner. Our results suggest good agreement between the
model-predicted and experimentally measured ABP fluctuations
and region specific correlations with the BOLD fluctuations.

I. INTRODUCTION

The BOLD-fMRI signal is used to detect local neural
activity indirectly through the neurovascular coupling ef-
fect [1]. This effect consists of a complex interplay be-
tween cerebral blood flow (CBF), cerebral blood volume
(CBV), and cerebral metabolic rate of oxygen consumption
(CMRO2) which parallels local glucose metabolism in the
brain following neural activation [2]. As a result, local brain
activity is observed as a BOLD increase due to an effective
local increase in oxygenated haemoglobin in the venous
compartments of activated brain regions.

This contrast mechanism is, however, also impacted by
phenomena that modulate the interplay between CBF, CBV,
and CMRO2 independently of neural activity. These phys-
iological confounds include heart rate variability (HRV),
respiratory flow (RF), and arterial blood pressure (ABP) fluc-
tuations (see [3] for an exhaustive review on physiological
confounds in resting-state fMRI). The effects of HRV and RF
have been extensively studied previously using physiological
recordings obtained concurrently with the BOLD-fMRI sig-
nal (see for example [4]). On the other hand, the relationship
between the BOLD-fMRI signal and ABP fluctuations is
less well studied, mostly due to the difficulty in reliably
measuring this physiological signal inside the scanner.
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Previous attempts at characterising the impact of ABP
fluctuations on the BOLD signal have used modified tech-
nologies to make them MRI compatible. [5], [6] used a
modified version of the Finapres Nova system (Finapres
Medical System, Enschede Netherlands), which was shielded
from the MRI environment using a mu-metal box, to ob-
tain continuous ABP measurements during phenylephrine
injections and acute hypoxia and used these to study the
involvement of the central autonomic network (CAN) in
the human baroreflex and chemoreflex. [7] used an MRI
compatible version of the CareTaker with an extended finger
cuff (CareTaker Medical, Virginia USA) to obtain continuous
ABP measurements during lower body negative pressure to
study the involvement of the CAN in human cardiovascular
regulation. [8], [9] also used the same MRI version of the
CareTaker to study cerebral autoregulation using fMRI.

Implementing such modifications to measure ABP fluc-
tuations during MRI may not be feasible in many cases,
which has consequently limited the studies measuring ABP
in the scanner. Here, we present a combined experimental
and mathematical modeling methodology to accurately es-
timate ABP changes in the MRI environment using PPG
measurements, which can be routinely recorded by most
commercial scanners. The proposed method relies on per-
forming a calibration session using an established ABP
measurement method (e.g: Portapres, Finapres Medical Sys-
tem, Enschede Netherlands), identifying the most informative
PPG waveform features and using these to predict ABP
values. Since BOLD-fMRI is non-quantitative, we focus on
predicting accurately the relative ABP fluctuations rather
than the absolute values. Nonetheless, our method is based
on PPG and as such could be generalized to other cases such
as wearable devices.

II. METHODOLOGY

A. Experimental protocol

Calibration phase: To estimate ABP fluctuations in the
MRI scanner, we acquired two five-minute calibration
recordings outside the scanner. These included measurements
using an MRI compatible PPG sensor and a non-MRI
compatible continuous ABP monitor (Portapres) while the
participant was at rest in a supine position. These recordings
were used to train a mathematical model that is subsequently
used to estimate ABP fluctuations using the PPG signal only
during the scanning protocol. The calibration recordings can
be acquired before and after the functional scan in the MRI
control room.
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Validation phase: To validate the accuracy of ABP estima-
tion using calibration recordings, we acquired data during
physiological manipulations that induced larger amplitude
ABP fluctuations (controlled breathing and cold pressor
test). Specifically, PPG and ABP were collected outside
the scanner in ten healthy participants (20-27 years old, 5
females). The participants were asked to lie down in a supine
position on a thin mattress for the duration of the acquisition.
Each session consisted of 5 minute resting-state (eyes open),
6 minute controlled breathing (four repeated blocks of cued-
breathing at 20 breaths/min for one minute followed by a
20 sec breath-hold), 12.5 minutes of a cold pressor stimulus
(five application of a cold pressor on the left ankle for 60
seconds followed by the application of a room temperature
cloth for 90 seconds), and a final 5 minute resting-state (eyes
open). This protocol was also repeated in the MR scanner,
where only PPG was measured.

B. Mathematical modeling

Mean arterial blood pressure (MAP) was extracted from
the Portapres signal by detecting semi-automatically the
systolic and diastolic points with PhysioPeaksFinder, a MAT-
LAB graphical user interface (GUI) programmed in-house
(https://github.com/DagenaisR/PhysioPeaksFinder). MAP is
defined in (1), where SBP and DBP refer to systolic and
diastolic blood pressure respectively.

MAP =
(SBP + 2 ·DBP )

3
(1)

The MAP signal was re-sampled at 4Hz, band-passed with
a fourth order Butterworth filter (0.008-0.15Hz), and then
normalized such as to make it unit-variance.

The PPG signal was band-passed (0.5-10 Hz) using a
fourth order Butterworth filter. The resulting signal was then
separated into individual pulses to extract features semi-
automatically. For each heartbeat, the diastolic point and the
systolic and diastolic peaks were identified using Physio-
PeaksFinder. The equivalent MAP point was also extracted
in the PPG waveforms using (1). The amplitude and temporal
position were extracted for each point (see Fig. 1) and the
difference and first order interactions were computed (22
amplitude based features, and 7 temporal based features).

Fig. 1. Schematic of the semi-automatic extraction of the diastolic point
(P0, T0), systolic peak (P1, T1), and the diastolic peak (P3, T3) performed
using PhysioPeaksFinder (right). The midpoint between P1 and P0 was then
obtained (Pm) as well as its location (Tm) between T0 and T1.

Following this, a decomposition of each pulse was per-
formed using a temporal version of the Schrödinger equation
as explained in [10]. Briefly, each pulse was decomposed
into a sum of eigenvectors (10 in this case) by solving the
eigenvalue problem shown in (2) with the MATLAB routine
eig.

(−D2 − χ · diag(y))Ψ = λΨ (2)

Where D2 corresponds to the second-order differentiation
matrix defined in [10] and presented in (3, 4):

• If y contains an even number of samples (N)

D2(k, j) =
∆2

(∆t)2

{−π2

3∆2 − 1
12 for k = j

−(−1)k−j 1

2 sin2(
(k−j)∆

2 )
for k ̸= j

(3)
• If y contains an odd number of samples (N)

D2(k, j) =
∆2

(∆t)2


−π2

3∆2 − 1
12 for k = j

−(−1)k−j cot(
(k−j)∆

2 )

2 sin2(
(k−j)∆

2 )
for k ̸= j

(4)

with ∆ =
2π

N
,∆t = sampling rate (5)

where k, j = 1...N, χ is the scaling parameter which
determines the number of eigenvectors used to decompose
the pulse y, Ψ is the wave equation, or mathematically, the
eigenvector matrix, and λ are the eigenvalues. 19 features
were extracted as in [11] from the eigenvalues and the pulse
decomposition residuals.

Finally, the pulse low frequency signal (≤0.5Hz) and
the envelope (minimum and maximum of each pulse) were
extracted (3 features). In total, 51 features were obtained
from the PPG waveform and re-sampled at 4Hz. Outliers
were detected and replaced with the nearest value and each
feature was then band-passed with a fourth-order Butterworth
filter (0.008-0.15Hz). All the features were normalized to
a unit variance. An explicit description of each feature is
presented in the MATLAB code provided in the GitHub
repository (https://github.com/DagenaisR/EMBC23).

The subject-specific stacking model was trained using two
recordings as calibrations. Once trained, the stacking model
can predict MAP fluctuations from the PPG signal only. The
modeling process is presented in Fig. 2.

Overall, the dimensionality of the highly co-linear features
(amplitude and eigenvalue features) was first reduced by
the base models using dynamic partial least square (dPLS)
regression (PLS with time lagged features included in the re-
gression matrix), and the resulting outputs were subsequently
fed into an elastic net regressor along with the time lagged
temporal and slow-fluctuations features.

III. RESULTS

A. Model-predicted ABP fluctuations

The MAP fluctuations were estimated for the three con-
ditions tested (resting-state, controlled breathing, and cold
pressor test). The subject-specific stacked model was trained



Fig. 2. Subject specific stacking model workflow used to predict the
MAP fluctuations using the PPG signal only. In the first phase (training),
the features and MAP from the calibration recordings (2 x 5 minutes)
were randomly sampled in 20 blocks of 30 sec with replacement to train
the model 20 times (20 fold blocked bootstrap). In the second phase
(prediction), the validation data was used, and the final MAP prediction
was obtained by averaging over the predictions given by the 20 trained
models (βPLS−amp(i), βPLS−eig(i), βeNet(i), with i = 1 ... 20). The
optimal number of time lagged features to include in the regression matrix,
the PLS components for the base models, and the α parameter for the elastic
net regression were determined using a search grid on a group level.

as per Fig. 2. Overall, eight out of the ten subjects could
be processed to train the model. One subject (male) had to
be rejected because it contained too many motion artifacts
throughout the scans. Another subject (female) was rejected
due to low signal-to-noise ratio (SNR), which made the peak
detection impossible. The coefficient of determination (R2)
and Pearson’s correlation (r) values between the model-
predicted MAP fluctuations using the model and the true
values (as measured with Portapres) are presented in Fig. 3.

Fig. 3. Average R2 and r between the predicted MAP fluctuations and the
measured fluctuations (Portapres) for 8 subjects (F&M), and disaggregated
between males (M) (N = 4) and females (F) (N = 4) as a function of the
condition. The error bars denote standard deviation.

To provide a qualitative example of the resulting perfor-
mance of the model, two subject specific predictions are
presented in Fig. 4. These predictions can be considered as
representative in the sense that their individual performance
was the closest to the mean values presented in Fig. 3. The
coherence function between the model-predicted and the true
values is also presented to demonstrate the performance of
the model as a function of frequency.

Fig. 4. Representative model-predicted MAP fluctuations for a male (top
panel, R2 = 0.76, r = 0.88) and a female (bottom panel, R2 = 0.51, r =
0.76) subject during the controlled breathing task. The coherence function
between the measured and model-predicted MAP fluctuations is presented
on the right.

B. Correlation between ABP fluctuations and BOLD-fMRI

Results are presented for a specific subject (male) during
the controlled breathing task, where the global BOLD-fMRI
signal (GS) and the model-predicted MAP fluctuations were
averaged over the four repeated blocks of breath-hold/cued
breathing (Fig. 5). The controlled breathing task modulated
the MAP fluctuations and the GS similarly over the four
repeats (R2 = 0.61).

Fig. 5. Representative GS and model-predicted MAP fluctuations averaged
over four repeated breath-holds (20 sec), followed by cued-breathing (20
breaths/min). The shaded area presents the standard deviation over the four
repetitions.

We also investigated the correlation between the ABP
fluctuations and the BOLD-fMRI signal on a voxel-wise
level averaged over five participants (2 females) for the three
examined conditions. Briefly, the MAP fluctuations were
convolved with an impulse response function modeled as
a double gamma function to predict the GS on a subject
level (see [4] for a detailed analysis with HRV and RF).
The resulting subject-specific ABP response was correlated
voxel-wise with the local BOLD signal. The resulting cor-



relation maps were then averaged for the five participant for
the three different conditions tested (Fig. 6).

Fig. 6. Group level (N = 5) voxel-wise Pearson’s correlation values
(r) between the ABP responses and the local BOLD signal for all three
conditions.

IV. DISCUSSION

We describe a novel methodology to estimate ABP fluctu-
ations in the MRI environment. The pre-scan and post-scan
calibrations are used to train the model. Our results show
that the proposed methodology is able to accurately estimate
ABP fluctuations during the resting-state and physiological
manipulations, and that the ABP estimates in the MR scanner
were correlated to BOLD signal fluctuations during all
experimental conditions.

We did not compare the performance of our methodology
with the existing literature on ABP estimation using PPG
mainly because these studies have been mostly conducted on
the MIMIC II database, which does not represent a healthy
population [12]. Moreover, the majority of these studies did
not report R2 and r statistics, but rather the mean absolute
error, standard deviation, and cumulative percentage error.
These statistical measures are recommended by the BHS and
AAMI standards for testing the reliability of ABP monitors
[13], [14]. Considering that the main interest of the present
work was BOLD-fMRI, which is non-quantitative, we were
mostly interested in the relative ABP fluctuations, which are
better described by R2 and r.

The principal limitation of this study, but not specific to
it, is that the prediction performance scales with the SNR of
the PPG measurements. In general, participants with smaller
hands and poor peripheral perfusion typically yield a lower
SNR. In our small sample size, we found that this was
more often the case with female participants, especially after
lying in a supine position for a few minutes. This resulted
in an inferior performance for this group for all conditions
(Fig. 3). Similarly, the SNR generally decreased during the
controlled breathing and cold pressor stimulus tasks, which
also resulted in inferior performance when compared to
resting-state prediction.

The sex-dependent performance may partly explains the
discrepancy between female and male participants in the
aforementioned studies ([5], [6], [8], [9]) where 83% of all
participants were male. This highlights the need for looking
at sex differences in the context of ABP estimation and for

studies that better represent the whole population. This is
critical to prevent a potentially negative over generalization
of the research findings.

Based on our observations, the model-predicted ABP fluc-
tuations could be improved by optimizing the experimental
protocol. While more informative features or a better model
could improve the performance, we found that the proposed
model yielded reliable results when clean waveforms were
acquired. As such, future improvements to this work will
focus on acquiring more data while minimizing the noise
through the experimental protocol.

Finally, the GS and model-predicted MAP fluctuations
obtained during the controlled breathing task (Fig. 5) suggest
a considerable degree of correlation between the two signals.
The group level correlation maps shown in Fig. 6 highlight
regions that are highly susceptible to physiological con-
founds [4] during all conditions and show similar correlation
patterns as [8], suggesting a potential application to our
methodology for BOLD-fMRI denoising and studies of the
autonomic brain centers.
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