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Abstract— White matter tracts generated from whole brain
tractography are often processed using automatic segmentation
methods with standard atlases. Atlases are generated from
hundreds of subjects, which becomes time-consuming to create
and difficult to apply to all populations. In this study, we
extended our prior work on using a deep generative model
- a Convolutional Variational Autoencoder - to map complex
and data-intensive streamlines to a low-dimensional latent
space given a limited sample size of 50 subjects from the
ADNI3 dataset, to generate synthetic population-specific bundle
templates using Kernel Density Estimation (KDE) on streamline
embeddings. We conducted a quantitative shape analysis by
calculating bundle shape metrics, and found that our bundle
templates better capture the shape distribution of the bundles
than the atlas data used in the original segmentation derived
from young healthy adults. We further demonstrated the use
of our framework for direct bundle segmentation from whole-
brain tractograms.

I. INTRODUCTION

Diffusion MRI[1], [2] and fiber tractography allow for in-
vivo reconstruction of white matter tracts [3], [4] and the
study of microstructural fiber integrity [S] and structural
connectivity in the brain. Tractography can also be used
to study psychiatric and neurodegenerative diseases such
as Alzheimer’s disease [6], [7]. Given the large number
of streamlines generated in whole brain tractograms and
numerous fiber bundles of interest, various bundle seg-
mentation methods [8], [9], [10] have been developed to
enable automated fiber bundle analyses that internally rely on
standard tractography atlas(es) [11], [12]. Atlases are often
computed from hundreds of subjects and enable alignment
across subjects; they can also be used as templates to assist
in bundle segmentation and along-tract analysis [7], [13].
However, even for the same bundles of interest, there is no
gold standard for how to define them, and there are often
large variations in the resulting segmentations across meth-
ods [14]. In addition, segmented bundles can still contain
a high proportion of false positive streamlines [15], [16],
making it difficult to directly conduct group comparisons.

Standard atlases are often derived from young, healthy
populations and they may not be useful for all populations.
Spencer et al. [17] created age-specific white matter atlases
for young children aged 6-8 years old, motivated by the
fact that there are developmental changes and adult brain
atlases may not be representative of younger populations.
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Publicly available white matter atlases have also been created
for neonates and 1-2 year old populations by Short et al.
[18]. In addition, atlases sometimes require tens to hundreds
of subjects, and those manually segmented by trained neu-
roanatomists results in lower sample size, overall making the
process time consuming.

Deep generative models have gained popularity in recent
years, in computer vision for text-to-image generation [19],
[20] and in medical imaging to create realistic synthetic
images [21]. They can learn a compact representation for
complex data distributions using deep neural networks and
can be used to generate new realistic samples in both brain
imaging and musculo-skeletal radiology [22]. Prior studies
have investigated the use of autoencoders, an architecture
that encodes high dimensional data into a low dimensional
latent space and optimizes the mapping to minimize data re-
construction error, on tractography data. FINTA [23], GESTA
[24] ad FIESTA [25] uses streamline-based autoencoders to
learn from tractogram(s) for streamline filtering, generative
sampling in the latent space and tractogram segmentation.
However, training on whole-brain tractograms which con-
tains a large amount of streamlines makes it more difficult
to capture variations across more training subjects. In the
generative sampling tasks, the implausible streamlines in
tractograms used for training can effect what the autoencoder
learns as valid streamline locations. Lizarraga et al. pro-
posed StreamNet [26], which uses Wasserstein autoencoders
(WAE) to learn from bundles directly instead of individual
streamlines and generate model bundles. Using subsampled
streamlines from bundles comes at the cost of losing shape
information of the entire bundle, and mapping one bundle to
one point in the embedding space is limited for segmentation
and filtering tasks.

In our previous work [27], we used a convolutional
variational autoencoder (ConvVAE) to learn low-dimensional
embeddings from high-dimensional streamlines, and we used
the flexibility of VAE to compute along-tract structural
anomalies for group comparisons. We found that ConvVAE
was able to preserve inter-streamline and inter-bundle dis-
tances well using an embedding space of only 6 dimensions.
In addition, the bottleneck in the encoder-decoder was able
to denoise and ”smooth” streamlines in reconstruction while
retaining their location, shape, and orientation. In this study,
we further investigate the use of a VAE to capture the
distribution of bundle shapes in its latent space with Kernel
Density Estimation (KDE). We show that our method can
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Fig. 1. Experiment Diagram. We show example embeddings of an example

control (CN) subject not used in training for two of the 6 latent dimensions

colored by bundle labels. Note that KDE was fitted on subsampled bundle embeddings from 50 subjects used for ConvVAE training instead of one subject.
Sampled points from the fitted KDE are then filtered using a selected threshold calculated from the training sample’s log-likelihood, shown on the lower
right plot. The upper right plots show the density plot of the embeddings in 2 dimensions colored by log-likelihood for samples used to fit KDE with
contours. The samples generated from KDE after filtering are also shown with the same contour overlayed for comparison. Plots are shown for one bundle,

the arcuate fasciculus (AF_L) for demonstration purposes.

generate synthetic bundle templates from a limited sample
size of 50 subjects from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) data, and better captures the
population-specific bundle shapes compared to the atlas data
that was created from young healthy controls from the Hu-
man Connectome Project [28]. We also demonstrate that the
estimated kernel density can perform bundle segmentation
directly from the whole brain tractograms.

II. METHOD
A. Data Processing

We analyzed 3D diffusion MRI data of the brain from
141 subjects - 87 cognitively normal controls (CN), 44 with
mild cognitive impairment (MCI), and 10 with dementia
(AD) - from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [29] (age: 55-91 years, 80F, 61M). 3D multi-shell
diffusion MRI was acquired from the participants on 3T
Siemens scanners, where each scan contains 127 volumes
per subject; 13 non-diffusion-weighted by volumes, 6 b=500,
48 b=1,000 and 60 b=2,000 s/mm? volumes with a voxel
size of 2.0x2.0x2.0 mm. dMRI volumes were preprocessed
using the ADNI3 dMRI protocol, correcting for artifacts
including noise [30], [31], [32], [33], Gibbs ringing [34],

eddy currents, bias field inhomogeneity, and echo-planar
imaging distortions [35], [36], [37]. Whole-brain tractogra-
phy was calculated using multi-shell multi-tissue constrained
spherical deconvolution (MSMT-CSD) [38] and a probabilis-
tic particle filtering tracking algorithm [39]. Auto-calibrated
RecoBundles [8], [7] from DiPY [30] was used to extract 30
white matter tracts from all subjects in the MNI space.

B. Model Design & Training

We trained a variational autoencoder (VAE) on 30
extracted bundles from 50 control subjects, with age
ranging from 62 to 86 years (M=71.17, SD=5.81) from the
ADNI S127 dataset, with a total of 1,642,183 streamlines.
Bundle labels were not used in training, and only the
streamlines’ coordinates were passed in as model input,
where one streamline is one sample. Each streamline was
resampled to 256 equidistant points to allow the use of
convolutional layers [23]. All streamlines from each subject
were normalized to fit into a standard sphere, where the
centroid and radius are calculated from the atlas data
(https://figshare.com/articles/dataset/
Atlas_of_30_Human_Brain_Bundles_in_MNI__
space/12089652)[12] to account for any misalignment



between subjects.

The encoder and decoder each had 3 layers of convolution
or deconvolution with leaky ReLU activation. Notably, large
kernel sizes of 127, 63, and 31 were used in the convolution
to better capture long range dependency within streamlines
[40]. Empirically, we found that large kernels generate
smoother streamlines in reconstruction, compared to smaller
kernel sizes (e.g., 3, 5) often used in traditional convolutional
neural networks. From our prior work, we found that setting
the dimension of the bottleneck layer (z) to 6 was optimal for
preserving streamline distances in the low-dimensional latent
space, and the same dimension was used in the current model
setting. The model was trained for 50 epochs with a batch
size of 512, using the Adam optimizer with a learning rate of
5e-4 and weight decay of 5e-3. We applied gradient clipping
with a max norm of 2. Cyclic annealing [41] was applied
to the Kullback-Leibler term to prevent posterior collapse, a
common issue in VAE training.

C. Bundle Template Generation

After training the VAE model, we performed inference
on all 141 subjects to extract their streamline embeddings
Z. For each bundle, we trained a kernel density estimator
(KDE) on Z from 20,000 randomly subsampled streamlines
embeddings in the bundle from the 50 subjects used to
train the VAE for computational efficiency. We tested 15
bandwidths, ranging from 0.01 to 10, and selected the best
KDE based on log-likelihood for downstream analysis.

After training the KDE, we sampled N points (ranging
from 5,000-10,000) from the fitted KDE to create the bundle
template. Despite training and tuning the VAE and KDE, the
sampled bundle can still contain noisy samples. We com-
puted the log-likelihood for each streamline in the sample
bundles and set the filtering threshold 7" to the mean log-
likelihood from the 20,000 streamlines used to train KDE.
Depending on the bundle, we can also relax this threshold
(e.g., to the 25% percentile of the log-likelihood from the
training samples). Selection of N and T' are empirical and
depend on the model fit and size of the desired bundle.
The filtered generated samples in the low-dimensional latent
space were then passed to the VAE decoder to extract the fi-
nal bundle template. A complete diagram of our experimental
design is shown in Figure 1.

D. Bundle Shape Analysis

To compare our population-specific bundle templates with
the atlas data used in bundle segmentation, we first computed
the bundle shape similarity (SM) scores [7], [30] between
the subject bundles for all subjects excluding those used
in training the VAE and KDE, and the template and at-
las bundles. We then calculated 6 additional bundle shape
metrics - length, span, volume, diameter, surface area, and
irregularity, defined in Yeh (2020) [42] to further investigate
the features preserved in the low-dimensional embeddings
and their distributions learned by the KDE. We expect the
bundle templates’ shape to align more closely with the
subject bundles than the atlas data. In a downstream task,
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Fig. 2. Bundle templates for 3 selected bundles - AF_L, CC_ForcepsMinor,
and FPT_L. The filtered, unfiltered bundle templates generated from KDE
as described in Section II-C, atlas bundles, and example bundles from a
randomly selected control subject are shown from left to right.
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Fig. 3. Shape similarity (SM) scores for subject vs. template bundles and
subject vs. atlas bundles are shown for 91 subject from the test set across
3 diagnostic groups.

we demonstrate the use of the fitted KDE to extract bundles
directly from whole-brain tractograms.

I1I. RESULTS
A. Bundle Template Evaluation

For a detailed examination of the bundle templates, we
show examples for one corpus callosum (corpus callosum
forceps minor, CC_ForcepsMinor), one association bundle
(left arcuate fasciculus, AF_L), and one projection bundle
(left frontopontine tract, FPT_L) in Figure 2. All three
template bundles were initially sampled with N = 8,000
from the fitted KDE and decoded by the ConvVAE. The
AF_L and CC_ForcepsMinor template were filtered using the
mean log-likelihood of the samples used to fit KDE, whereas
the FPT_L template was filtered using 25% of the log-
likelihood. Without filtering, the template bundle has a larger
span and thickness and contains some noisy samples. For
FPT_L, selecting a lower threshold yielded results that were
more consistent with the atlas and training data considering
its size and high number of streamlines per bundle.

In the shape analysis, we computed shape similarity (SM,
ranging from O to 1, where a higher score indicates greater
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similarity) of the template and atlas bundles with the subject
bundles. SM scores were computed for a total of 91 subjects
(CN: 37, MCI: 44, AD: 10), excluding the 50 CN subjects
used in training, and we compare these for the 3 diagnostic
groups in Figure 3. Overall, SM scores are consistently
higher (above 0.8 for most subjects) for the template than
the atlas bundles, indicating that the VAE and KDE model
is able to capture population-specific bundle shapes despite
using the atlas data for bundle segmentation. We also see
lower variances in SM for the AF_L and CC_ForcepsMinor
templates than the atlas bundles for all 3 groups. Considering
that the VAE and KDE are trained on CN subjects, and
potential shape anomalies that occur in bundles for subjects
with dementia, we see lower shape similarity in the AD
group for AF_L and CC_ForcepsMinor, more notable in the
atlas data.

Six shape metrics computed for the template and atlas
bundles were also compared with the corresponding subject
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bundles, see Figure 4, 5, and 6. For all three bundles, the
synthetic templates show shorter bundle lengths, whereas
the atlas bundles are longer than the subject bundles. The
templates align with the subject bundle shape distribution
for other metrics, particularly for the span, volume, and
surface area. Given the limited sample size used in VAE
training and the 20,000 streamlines in estimating kernel
density, the templates show comparable results in shape
metrics compared to the atlas data.

B. Whole-Brain Tractogram Segmentation

In a downstream analysis, we used the fitted KDE for each
bundle to perform segmentations directly from whole-brain
tractograms. We first perform inference on all streamlines
in a given tractogram to extract their embeddings, then
calculate the log-likelihood using KDE for each sample.
We then filter the results using a more lenient threshold
(@1 —1.5%x(Q3 — Q1) = Q1 —1.5x IQR, calculated from
the training samples’ log-likelihood, often used in outlier
removal) compared to the previous threshold used in template
generation. This threshold can also be adjusted depending on
the desired shape of the final bundle. Similarly, the filtered
embeddings are then decoded using the ConvVAE decoder.
We show bundles segmented using RecoBundles using the
atlas as reference bundles and our approach in Figure 7 for
one CN and one AD subject not used in training.

The shape similarity (SM) scores between KDE segmented
bundles and RecoBundles results are higher for AF_L and
FPT_L, and higher in the CN subject for all bundles. Low
SM score for CC_ForcepsMinor could be due to the high
inter-subject variation and false positive streamlines in the
bundles used for VAE training. Overall, the results from
our approach largely preserved the shape and location of
the bundle, with some slight shape differences. Given that
the ConvVAE model inference evaluates each streamline
independently, our approach can also be used on incomplete
tractograms.



CC_ForcepsMinor

RecoBundles
Segmented

CN Subject

KDE Segmented
(Our approach)

SM=0.590 SM=0.857

h

SM=0.489

SM=0.934

:

SM=0.632

RecoBundles
Segmented

AD Subject

KDE Segmented
(Our approach)

SM=0.449

Fig. 7. Whole-brain tractogram segmentation results using RecoBundles
and KDE for one CN and one AD subject from the test set. Shape similarity
(SM) scores between bundles generated using the two approaches are shown
below each pair of plots.

IV. DISCUSSION

In this study, we proposed to use Kernel Density Esti-
mators (KDE) along with a ConvVAE to learn the shape
distributions of bundles, given a limited sample size and
bundles that contain false positive streamlines. We showed
that our synthetic bundle templates can capture the shape
distribution from the training data and show higher shape
similarity with the subject bundles. In terms of computation
time, the ConvVAE took 42 minutes to train on an NVIDIA
Tesla V100 GPU, 3 minutes to fit the KDE for one bundle
on an 8-core CPU, and 3 minutes per subject to perform
VAE and KDE inference on whole brain tractograms for
segmentation. With a trained VAE and KDE, our model is
computationally efficient and simple to extend to a large
number of subjects with little adaptation.

As demonstrated by the segmentation task in Section III-
B, KDE can be used to segment bundles directly from
whole-brain tractograms. If we were to select a different
segmentation method or atlas, our model can also be adapted
to train on various schemas without segmenting a large
number of bundles to train on or filtering out the false
positive streamlines. While our approach can be used for
bundle segmentation, the idea of learning shape distributions
with a VAE and KDE has the potential to be extended
to more advanced architectures, such as conditional deep
generative models (CDGM) [43] where we can use mi-
crostructural features such as fractional anisotropy (FA),

subject labels and other metadata to supervise the bundle
generation process. This opens up more opportunities for
using DGM to understand how various neurodegenerative
and psychiatric diseases can affect bundle structures, and
even model their changes across developmental stages and
the human lifespan.

One limitation of the bundle templates generated from
KDE is that the bundle lengths are underestimated. This
could be due to how the VAE learns the streamline endpoints.
With a low dimensional latent space, the VAE is able to learn
shape variations along the tract, but wide variations in the
bundle endpoints across subjects might not be preserved. For
the purpose of bundle segmentation or streamline filtering,
regional connectivity of the bundles generated warrants fur-
ther investigation.

V. CONCLUSION

In this study, we extended our prior work training a
Convolutional Variational Autoencoder (ConvVAE) to extract
low-dimensional embeddings from tractography data, to use
Kernel Density Estimators (KDE) to learn bundle shapes
from a limited sample size of 50 subjects. We generated
a synthetic population-specific bundle template from KDE
samples and showed that they can better capture the shape
distributions on a test set composed of control, MCI, and
AD subjects, compared to the atlas bundles, derived from
young healthy controls from HCP used in the original
segmentation. We further demonstrated the use of KDE for
direct bundle segmentation on whole-brain tractograms. Our
framework offers an efficient, robust, and flexible approach
to understanding the shape of bundle structures, as well as
generating synthetic data and potentially aiding in modeling
structural abnormalities and changes in bundles in various
diseases.
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