
Reality Stack I/O: A Versatile and Modular Framework for Simplifying and
Unifying XR Applications and Research

Florian Kern*

University of Würzburg
Würzburg, Germany

Marc Erich Latoschik†

University of Würzburg
Würzburg, Germany

Figure 1: The Reality Stack I/O example, implemented with Unity, consists of a 2D user interface (1), a 3D sketching tool (2), and a
virtual-to-physical surface alignment technique (3ViSuAl [4]). In this scenario, the user operates a Meta Quest Pro device, interacting
via controllers (3, 4), hand tracking (5, 6), and eye tracking. Pressing the orange passthrough UI button switches between VR (3, 5)
and VST AR (4, 6). The 3D sketching tool enables basic drawings (2), and 3ViSuAl makes it easy to align virtual surfaces with flat
physical surfaces. Here, the user has aligned the 2D user interface with a wall, allowing for direct touch interaction (7).

ABSTRACT

This paper introduces Reality Stack I/O (RSIO), a versatile and mod-
ular framework designed to facilitate the development of extended
reality (XR) applications. Researchers and developers often spend a
significant amount of time enabling cross-device and cross-platform
compatibility, leading to delays and increased complexity. RSIO
provides the essential features to simplify and unify the development
of XR applications. It enhances cross-device and cross-platform
compatibility, expedites integration, and allows developers to focus
more on building XR experiences rather than device integration. We
offer a public Unity reference implementation with examples.

Index Terms: Human-centered computing—Virtual reality—;
Human-centered computing—Mixed / augmented reality—;

1 INTRODUCTION

Spatial computing is an essential step towards seamlessly integrat-
ing physical and virtual environments for extended reality (XR)
workspaces. It leverages technologies such as virtual reality (VR),
augmented reality (AR), and mixed reality (MR) that enable users
to interact with digital and real content in an intuitive, spatial way.

In particular, cross-reality (CR), also called transitional interfaces
(TI), supports simultaneous use and transition between different
points on the reality-virtuality continuum [7,9]. CR/TI are promising
approaches for understanding and exploring spatial data and related
information, that need to be explored in HCI research [1, 3, 8].

For example, Schröder et al. [8] presented analytical lenses for
understanding dyadic collaboration in transitional interfaces, Jet-
ter et al. [2] explored VR as a design tool for sketching and simu-
lating spatially-aware interactive spaces, and Kern et al. [5] investi-
gated controller-based virtual tap- and swipe keyboards in VR and
video see-through (VST) AR.

While the design of these applications already requires exten-
sive knowledge, another major challenge becomes apparent during

*e-mail: florian.kern@uni-wuerzburg.de
†e-mail: marc.latoschik@uni-wuerzburg.de

development and research: the variety of XR devices and platforms.
XR devices offer a wide range of capabilities that are continually

expanded. For example, early devices (e.g., Oculus Rift S) only
support head and controller tracking. In comparison, recent devices
(e.g., Meta Quest Pro or Pico 4 Enterprise) also provide sensors
for hand-, eye-, and face tracking, as well as MR. Therefore, re-
searchers and developers often spend a significant amount of time
enabling cross-device and cross-platform compatibility rather than
building XR experiences for visualization, interaction, design, or
collaboration.

For Unity, an established cross-platform game engine for XR
development, frameworks such as Mixed Reality Toolkit (MRTK)1

or XR Interaction Toolkit (XRI)2 have emerged as popular solutions
for developing applications across realities, devices, and platforms.

Focused on the OpenXR standard, these frameworks provide
flexible input systems and basic components for MR interactions
and interfaces. However, XR device manufacturers often make their
latest features available only through their native XR plugins, rather
than directly integrating the OpenXR standard by default. As a result,
only a limited number of devices are supported, and incorporating
new features can be highly time-consuming or even impossible.

In contrast, frameworks like the Virtual Reality Toolkit (VRTK)3

and UltimateXR4 simplify development by using native XR plugins
instead of relying solely on the OpenXR standard. While these
frameworks support a wide range of consumer XR devices, they
focus primarily on interaction features for VR rather than CR/TI.
Consequently, they offer limited support for technological advances
such as CR and MR, eye- and face tracking, or spatial anchors.

Another well-established virtual reality platform is SteamVR5,
best known from the digital distribution platform Steam. SteamVR
serves as an interface between XR hardware and software and is
renowned for its high cross-device compatibility. However, the
integration for cross-platform XR is restricted. Concretely, it does
not offer native support for Android-based standalone XR devices,
which limits its reach in the increasingly diverse XR ecosystem.

1https://learn.microsoft.com/windows/mixed-reality/mrtk-unity/
2https://docs.unity3d.com/Manual/com.unity.xr.interaction.toolkit/
3https://www.vrtk.io/
4https://www.ultimatexr.io/
5https://store.steampowered.com/app/250820/SteamVR/

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

74

2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)

DOI 10.1109/ISMAR-Adjunct60411.2023.00023

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ix
ed

 a
nd

 A
ug

m
en

te
d

R
ea

lit
y

A
dj

un
ct

 (I
SM

A
R

-A
dj

un
ct

) |
 9

79
-8

-3
50

3-
28

91
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
M

A
R

-A
dj

un
ct

60
41

1.
20

23
.0

00
23

With Reality Stack I/O (RSIO), we aim to bridge the gap be-
tween feature-rich interaction frameworks and the most advanced
XR device features. RSIO builds on the OpenXR standard and, if the
required functionality is not yet available, on manufacturers’ native
XR plugins. It ensures flexibility and versatility, making it compati-
ble with Microsoft Windows and Android-based XR devices. Our
approach enhances cross-device and cross-platform compatibility,
expedites integration, and allows developers to focus on building
XR experiences rather than device integration. From a research per-
spective, RSIO can support the replicability of previous experiments
and facilitate direct comparisons between XR devices.

Reality Stack is our vision to provide reusable and publicly avail-
able software components for XR applications and research. We
offer a public Unity reference implementation8 with examples.

2 DESIGN REQUIREMENTS

In developing RSIO, our primary goal was to expedite and simplify
XR development and research. Therefore, we defined the following
design requirements: The RSIO architecture should be inherently
flexible to allow easy and timely extensions. RSIO should be com-
patible with various XR devices, established interaction frameworks,
and custom solutions for social XR, sketching, and text input. In ad-
dition, it should be able to function as a standalone framework. RSIO
should be user-friendly, and provide examples and documentation.

3 REFERENCE IMPLEMENTATION

For our reference implementation, we use Unity 2021.3 LTS. Unity
is a widely used and versatile game engine that provides extensive
support for XR development, making it an ideal platform for our
purposes. Using a long-term support (LTS) version ensures stability
and consistency. Fig. 2 shows the architecture of RSIO.

Figure 2: The architecture of Reality Stack I/O. We use Unity XR
SDKs and, when features are not yet supported, the manufacturers’
native XR plugins.

RSIO provides developers with access to lightweight interfaces
that abstract the OpenXR standard and, if features are not yet sup-
ported, utilize manufacturers’ native XR plugins. We provide essen-
tial features, including head tracking, eye tracking, hand tracking,
controller tracking, hand gestures, and input capabilities. Consider-
ing the growing interest in and accessibility of MR devices, we also
include passthrough support. The system also provides developers
with features for aggregated, unified data access. For example, the
generic input feature unifies user input from controller buttons, hand
gestures, and traditional keyboard and mouse.

XR devices usually offer similar tracking sources with a head-
mounted display (HMD) and hand controllers. However, controllers
can greatly vary in shape and grasping possibilities [4]. Therefore,
our system provides tracking anchors that are, by default, attached
to fingertips and controller models. The concept of tracking anchors
derives from previous research [4, 6], which proposed uniform ref-
erence points on XR controllers (i.e., a stylus tip anchor) for 2D
interactions (in 3D), handwriting, and sketching.

Fine-grained recording of raw (i.e., positions/rotations) and uni-
fied (i.e., generic input) data is also essential for XR research. We
offer a flexible CSV-based data recording interface that empowers
researchers to conduct in-depth analyses of their user studies and
develop replay capabilities for recorded user sessions. Each feature
(e.g., eye or hand tracking) can implement the recording interface
and is responsible for providing its CSV header and data.

Showcasing our Unity reference implementation, we provide
the Oculus plugin designed for Meta/Oculus devices, as depicted
in Fig. 3. The plugin supports eye-, controller-, and hand tracking,
recognizes hand gestures, supports passthrough, provides tracking
anchors, and implements the data recording interface. In addition, it
incorporates a generic input feature that merges various input modal-
ities like hand gestures and controller-, keyboard- and mouse buttons.
Our plugin relies on the official OVRCameraRig and can be easily
extended with recent Meta features like face- and body-tracking.

Figure 3: The RSIO Oculus plugin is designed for Meta/Oculus de-
vices, supports various features, and is easily extendable.

4 EXAMPLES

We support researchers and developers by offering various examples
of how to use RSIO. In addition to XR device and platform integra-
tion, we provide examples for spatial interaction and spatial input.
Examples include distance-based UI interaction with controllers,
hand gestures, and eye-gaze pointing approaches, as well as direct
touch-based solutions (See Fig. 1). We also integrate RSIO with a
public social XR platform, Ubiq [10], and the Off-The-Shelf Stylus
framework [4] for 2D interactions, sketching, and handwriting.

5 LIMITATIONS AND FUTURE WORK

While RSIO aims to simplify XR development, every new frame-
work has its learning curve. To assess usability, we plan to conduct
a user evaluation involving novice and experienced XR developers.
Since RSIO introduces an additional layer, there might be perfor-
mance implications. A technical evaluation can identify optimization
opportunities. In a rapidly evolving XR field, RSIO faces develop-
ment, support, and maintenance challenges, but we try to integrate
XR devices and platforms continually. While other interaction frame-
works primarily target consumer XR devices, we also plan to include
motion-tracking systems like OptiTrack6 and TheCaptury7.

6 CONCLUSION

Reality Stack I/O is a versatile and modular solution for developing
XR applications and research. Our approach enhances cross-device
and cross-platform compatibility, expedites integration, and allows
developers to focus more on building XR experiences rather than
device integration. We offer a publicly available Unity reference
implementation8 accompanied by various examples.

6https://optitrack.com/
7https://captury.com/
8https://go.uniwue.de/realitystack-io

75

ACKNOWLEDGMENTS

Our research has been funded by the German Federal Ministry
of Education and Research (BMBF) in the project ViLeArn More
(Reference: 16DHB2214) and by the Bavarian State Ministry For
Digital Affairs in the project XR Hub (Reference: A5-3822-2-16).
We thank Florian Heinrich for manuscript discussions and Peter
Kullmann for architectural discussions. We are also thankful to the
anonymous reviewers for their helpful comments.

REFERENCES

[1] R. Grasset, J. Looser, and M. Billinghurst. Transitional interface:

concept, issues and framework. In 2006 IEEE/ACM International Sym-
posium on Mixed and Augmented Reality, pp. 231–232. IEEE, Santa

Barbara, CA, USA, Oct. 2006. doi: 10.1109/ISMAR.2006.297819

[2] H.-C. Jetter, R. Rädle, T. Feuchtner, C. Anthes, J. Friedl, and C. N.

Klokmose. ”In VR, everything is possible!”: Sketching and Simulating

Spatially-Aware Interactive Spaces in Virtual Reality. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,

pp. 1–16. ACM, Honolulu, HI, USA, Apr. 2020. doi: 10.1145/3313831

.3376652

[3] H.-C. Jetter, J.-H. Schröder, J. Gugenheimer, M. Billinghurst, C. An-

thes, M. Khamis, and T. Feuchtner. Transitional Interfaces in Mixed

and Cross-Reality: A new frontier? In Interactive Surfaces and Spaces,

pp. 46–49. ACM, Lodz Poland, Nov. 2021. doi: 10.1145/3447932.

3487940

[4] F. Kern, P. Kullmann, E. Ganal, K. Korwisi, R. Stingl, F. Niebling,

and M. E. Latoschik. Off-The-Shelf Stylus: Using XR Devices for

Handwriting and Sketching on Physically Aligned Virtual Surfaces.

Frontiers in Virtual Reality, 2:684498, June 2021. doi: 10.3389/frvir.

2021.684498

[5] F. Kern, F. Niebling, and M. E. Latoschik. Text Input for Non-

Stationary XR Workspaces: Investigating Tap and Word-Gesture Key-

boards in Virtual and Augmented Reality. IEEE Transactions on
Visualization and Computer Graphics, 29(5):2658–2669, May 2023.

Conference Name: IEEE Transactions on Visualization and Computer

Graphics. doi: 10.1109/TVCG.2023.3247098

[6] F. Kern, M. Popp, P. Kullmann, E. Ganal, and M. E. Latoschik. 3D

Printing an Accessory Dock for XR Controllers and Its Exemplary

Use as XR Stylus. In Proceedings of the 27th ACM Symposium on
Virtual Reality Software and Technology, VRST ’21. Association for

Computing Machinery, New York, NY, USA, 2021. event-place: Osaka,

Japan. doi: 10.1145/3489849.3489949

[7] P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual

Displays. IEICE Transactions on Information and Systems, 77:1321–

1329, 1994.

[8] J.-H. Schröder, D. Schacht, N. Peper, A. M. Hamurculu, and H.-C. Jet-

ter. Collaborating Across Realities: Analytical Lenses for Understand-

ing Dyadic Collaboration in Transitional Interfaces. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems,

pp. 1–16. ACM, Hamburg Germany, Apr. 2023. doi: 10.1145/3544548

.3580879

[9] R. Skarbez, M. Smith, and M. C. Whitton. Revisiting Milgram and

Kishino’s Reality-Virtuality Continuum. Frontiers in Virtual Reality,

2:647997, Mar. 2021. doi: 10.3389/frvir.2021.647997

[10] A. Steed, L. Izzouzi, K. Brandstätter, S. Friston, B. Congdon, O. Olkko-

nen, D. Giunchi, N. Numan, and D. Swapp. Ubiq-exp: A toolkit to

build and run remote and distributed mixed reality experiments. Fron-
tiers in Virtual Reality, 3:912078, Oct. 2022. doi: 10.3389/frvir.2022.

912078

76

