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Figure 1: We present an AR-based assistant for collaboration in an assembly task between a (A) robot and (B) human operator in a
joint workspace (left). We therefore present situated robot status information (e.g., movement path (C)) and task-related details (e.g.,
building instructions (D)) (right). Note: The path visualization and user’s virtual hand are enhanced for better visibility in print.

ABSTRACT

While technologies for human-robot collaboration are rapidly ad-
vancing, plenty of aspects still need further investigation, such as
ensuring workspace awareness, enabling the operator to reschedule
tasks on the fly, and how users prefer to coordinate and collaborate
with robots. To address these, we propose an Augmented Reality
interface that supports human-robot collaboration in an assembly
task by (1) enabling the inspection of planned and ongoing robot
processes through dynamic task lists and a path visualization, (2)
allowing the operator to also delegate tasks to the robot, and (3)
presenting step-by-step assembly instructions. We evaluate our AR
interface in comparison to a state-of-the-art tablet interface in a user
study, where participants collaborated with a robot arm in a shared
workspace to complete an assembly task. Our findings confirm the
feasibility and potential of AR-assisted human-robot collaboration,
while pointing to some central challenges that require further work.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI); Human-centered computing—Mixed / augmented
reality; Human-centered computing—User studies; Computer sys-
tems organization—External interfaces for robotics

1 INTRODUCTION

Substantial development effort in the manufacturing industry is
aimed towards automation to increase efficiency, reduce production
expenses, and improve working conditions. However, the increasing
demand for customized and tailored products often renders fully
automated product lines impractical or unprofitable, due to high
programming costs and lack of flexibility for adaptation. Thus a
hybrid setup combining human operator(s) and robot(s) is interesting
in such scenarios [36]. With the recent decade of development within
collaborative robots (cobots), companies are offered an opportunity
to increase productivity through partial automation, while retaining
flexibility, as cobots can work alongside human operators and are
generally easier to reconfigure for new tasks, compared to traditional

industrial robots [38]. However, as of today, cobots still rarely
collaborate with humans in a production environment [28, 38, 41].

Recent years have seen an increase in research for supporting
collaboration between humans and robots [39]. Augmented reality
(AR) has shown great promise to support this collaboration [51],
in particular within: communicating robot intent (e.g., [2, 44, 52]),
dynamic task allocation (e.g., [30,45]), and step-by-step instructions
(e.g., [3, 19]). These works show promising results within their
individual subjects, however, there is a lack of work that explores
how these topics influence each other.

To address this limitation, we present an AR system for support-
ing human-robot collaboration (HRC) by combining robot intent,
dynamic task allocation, and step-by-step instructions. Our system
supports: 1) Robot status display and action preview: The operator
successively receives communications from the robot, about how
it will perform the current operation (e.g., visualization of move-
ment path) and what other actions it plans to do afterwards. 2) Task
overview and allocation of operations: The operator can view the
planned tasks in a kind of “task list” and manage the list of oper-
ations. We enable the operator to dynamically delegate suitable
operations to the robot as the work is progressing. 3) Step-by-step
instructions: The AR interface offers step-by-step guidance for as-
sembly operations that are allocated to the operator, through situated
visualization of relevant information.

In this work, we consider the industrial scenario of injection
mold assembly, which involves a number of heavy components and
repetitive tasks, where assistance from a robot is beneficial. To
effectively support such collaboration, the operator is instrumented
with a Head-Mounted Display (HMD), which enables persistent
visualization of critical information within the operator’s field of
view, as well as situated visualization in the workspace. Furthermore,
it allows the operator to freely manipulate tools and workpieces, as
it supports hands-free interaction and can capture multi-modal input
from the operator (e.g., gestures, voice commands, eye gaze).

We evaluated our system in a lab study with 18 participants. In
our lab study, the participants were asked to do assembly tasks
with a collaborative robot. For the sake of replicability, user safety,
and to reduce confounds due to technical expertise, we designed a
simplified task with DUPLO bricks, instead of the injection moldWork licensed under Creative Commons Attribution 4.0 License.
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assembly. We argue that this simple task is sufficient to show the
strengths and weaknesses of the proposed AR system, as our primary
aim is to evaluate the interface components and interaction with the
robot, not the actual assembly procedure.

With our work, we contribute 1) an AR system that combines:
communication of robot intent, dynamic task allocation, and step-by-
step instructions in order to support a human operator collaboratively
performing an assembly task with a robot, 2) we present insights
from a user study, highlighting the main opportunities and challenges
of AR-based guidance, compared to a more traditional tablet-based
interface, 3) new directions for human-robot collaboration. to inform
the future design of collaborative human-robot interaction systems
and point out directions for future research.

2 RELATED WORK

Human-robot collaboration can be classified as a sub-category of
human-robot interaction, with multiple proposed definitions con-
sidering various dimensions [1, 26, 37, 45]. Attempting to consol-
idate these and resolve contradictions, Aaltonen et al. [1] propose
four levels of collaboration: no existence, coexistence, cooperation,
and collaboration. Collaboration is thereby the “highest” level of
interaction, which takes place when the “human and robot work
simultaneously on a shared object in shared space” [1].

In the following we will discuss related work from mainly three
areas within HRC research: (1) facilitating communication and
workspace awareness, (2) supporting task completion with AR, and
(3) dynamic task allocation and execution.

2.1 Enabling communication and workspace awareness

Breazeal et al. [9] postulates that implicit non-verbal communication
positively impacts human-robot task performance with respect to the
understandability of the robot, efficiency of task performance, and
robustness to errors that arise from miscommunication. One line of
research has explored this in the context of designing familiar (i.e.,
human-like) and therefore predictable movement patterns [6, 20].
More commonly, communication of a robot’s intent happens through
the presentation of digital information [44], e.g., by visualization
of the planned movement path in AR. Providing AR guidance is
typically done in three ways: through a display situated in the op-
erator’s environment [5, 13, 33], through projection mapping on
surfaces [2, 19, 24], or with an HMD displaying content directly in
front of the operator’s eyes [11, 35, 42, 46, 49]. How to best achieve
this depends on the context, task and available user interface. For ex-
ample, in a collision monitoring task, Rosen et al. [48] found a path
visualization presented in an AR HMD preferable to a monitor or
no visualization at all. On the other hand, Hietanen et al. [24] found
projection mapping to perform better than an HMD (HoloLens 1)
to indicate robot movement zones during an assembly task. Several
papers present variations of designs for line-based path visualiza-
tions that proved effective [3, 17, 56]. In the context of flying drones,
Walker et al. present a design space [55] proposing further vari-
ants for communicating robot motion intent in AR, like direction
indicators (e.g., arrows) and navigation points.

Motion intent is not the only relevant information for improving
the operator’s situational awareness in collaboration with a robot.
For example, Pascher et al. [44] propose aiding the understanding of
planned robot motion by additionally communicating the need for at-
tention, robot state, and user instructions to intervene. Several papers
propose projection-based AR interfaces to display information about
the robot’s current status, including task instructions, warnings, and
task completions [2, 21]. Further, Andronas et al. [3] support a wide
range of information visualizations (status, instructions, movement
intent, etc.) for workspace awareness across multi-modal interfaces -
i.e., permitting the user to interact through various interfaces (AR
HMD, smartwatch, phone, etc.). An excellent overview of design

and strategies for supporting situational awareness can be found in
the comprehensive review Suzuki et al. [51].

Building on prior research, our AR system includes a path vi-
sualization [17, 56] and further visual cues, such as holograms
[3,4,25,58], to enhance the operator’s workspace awareness. In con-
trast to most of the work reviewed here, we contribute an evaluation
of the proposed approach through a user study involving authentic
HRC, i.e., participants interact with an industrial collaborative robot
in a shared workspace. This allows us to explore pertinent issues
related to perceived safety and sense of control, operator’s collision
avoidance strategies, and workspace awareness during collaboration.

2.2 Supporting task instructions with AR
A key requirement for presenting situated instructions in AR is
the accurate registration of this content in the real world. This
requires alignment of several coordinate systems, such as the robot-
internal representation of the work area, the AR system’s world
coordinates, the model of the current workpiece, etc. Similarly to
multiple other systems [7,12,14,29,58], we employ marker tracking
with a QR code (see Sect. 3.3). To improve tracking accuracy and
reliability to within 1mm, Yan [58] employs several markers in
their proposed BRICKxAR - a novel instruction method for AR
construction guidance with LEGO bricks.

A second consideration that must be made concerns the type of
information and visualization that is used to convey instructions to
the user. For example, the intended placement of physical compo-
nents can be indicated by visualizing the respective holograms in
their target position [3,4,25,58]. Further, labels presented for virtual
objects [58] (similar to how object detection algorithms indicate
which object is recognized) can aid their identification. Animating
components, as proposed in e.g. AdapTutAR [25], can additionally
convey the dynamics of how components should be manipulated or
in what way they need to be placed.

Inspired by these works, our system conveys information to the
user, including the status and movement intent of the robot, and
instructions for the operator’s current task. Furthermore, we present
a task list to indicate the overall progress in the assembly sequence,
the remaining tasks and where work can be done in parallel.

2.3 Lack of support for dynamic task allocation in AR
While Mahadevan et al. [34] found that implicit task allocation led
to faster completion times and more simultaneous activity of both
actors, it was also found to lead to more robot errors and a reduced
feeling of being in control for the operator.

Several attempts have been made to create scheduling algorithms
for assembly tasks, each with various focus [16, 27, 31, 45, 53].
Parameters that can be considered are the capabilities of each agent,
the time taken to perform an action, the agent’s availability, success
rate, ergonomics, and more. The most recent attempts to implement
dynamic task allocation [45] found it to reduce the overall cycle
time compared to both manual assembly and static task allocation,
however, only used a tablet as a user interface. While Lamon et
al. [30] used AR for their comprehensive architecture for dynamic
role allocation and collaborative task planning in mixed human-robot
teams, their interface and user study are focused on task allocation.

In our system, we support dynamic task allocation and parallel
task execution, such that the operator and robot can work simultane-
ously. We focus on how to incorporate this in a broader system and
what implications it might have.

3 AR-SUPPORTED HUMAN-ROBOT COLLABORATION

We consider assembly processes as predefined sequences of steps,
each of which can be completed either by the operator, the robot,
or both, either sequentially or simultaneously. Importantly, we
envision the operator in a supervisor role, with the option to delegate
steps to the robot. The central challenge in the system design is to
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define a shared assembly model, such that the operator and robot
use the same data source. This should also support the parallel
execution of (some) tasks and incorporate ideas from related work
to communicate the status of the robot. These aspects are discussed
in more detail in the following sections.

3.1 Shared assembly model
In industrial manufacturing, a Bill of Process (BoP) is typically a
step-by-step list of tasks that describe how the operator assembles a
product, where each step could potentially be done in parallel.

We have formalized the steps of a BoP by introducing three types:
products, tasks, and assembly sequences. Products are physical
components, used to create other products, e.g., a bolt, or something
that has been assembled from other products, e.g., an injection mold.
Tasks define an action involving one particular product, e.g., insert a
bolt at a particular position in the mold. A task is a single step in an
assembly sequence. Furthermore, a task might have pre-conditions,
requiring previous tasks to be completed before it can be initiated.
Lastly, an assembly sequence is a collection of tasks.

Since we assume that the operator and robot can perform a subset
of the same tasks, a shared assembly sequence is used. Each task
has pre-defined information, e.g., product, position, pre-conditions,
and information about who can perform the task, used to show step-
by-step instructions to the operator or invoke pre-programmed robot
actions.

3.2 System overview and workstation setup
The system is currently distributed on three devices in our lab: a
Universal Robot arm (UR5e [47], Polyscope: v5.9.1) mounted on a
worktable, a mini-computer (ASUS PN51-E1), and an HMD (Mi-
crosoft HoloLens 2). While Hietanen et al. [24] found projection
mapping to perform better than an HMD (HoloLens 1), we expect
the recent advances in HMD technology (e.g., improved field of
view of HoloLens 2) to make it a viable option.

Figure 2: Illustration of dataflow between components in the system.
MQTT-UR retrieves data from the robot’s RTDE-interface via a socket
connection. AssemblyScript retrieves data from the AssemblyServer
via XML-RPC. The rest of the components communicate via MQTT.

It consists of seven software components, as illustrated in Fig. 2.
If possible, components communicate via MQTT [43], which is a
lightweight publish-subscribe protocol. A MQTT-Broker (Mosquitto
v2.0.15, MQTT v3.1.1, [15]) is responsible for handling communi-
cation between the various components running on different devices.
To retrieve real-time data from the robot, we employ the robot’s
built-in Real-Time Data Exchange (RTDE) interface (v2.7.1) [54].

The AssemblyServer running on the mini-computer handles the
assembly process, which entails loading products, tasks, and assem-
bly sequences and maintaining the status of any ongoing assembly
sequence. The AssemblyServer is the backend for the task list
which both the AssemblyHMD and WebClient communicate with
through the MQTT-Broker, allowing for starting a specific assembly
sequence, updating the status of a task, re-assigning a task, and
showing the robot’s movement path for a specific task.

The AssemblyScript, a UR-script running on the robot, polls
the AssemblyServer for tasks to be performed. The AssemblyScript
notifies the AssemblyServer about the current status of the task being
performed. Furthermore, the AssemblyScript has additional safety
features on top of what is built into the robot [26], which monitor

applied forces during all robot actions, and immediately returns to a
neutral position if excessive forces are applied. Joint moves are used
for longer transitions (e.g., when moving towards the place point)
with parameters set to movej(a = 0.7rad/s2,v = 0.5rad/s,r = 0),
which corresponds to a joint acceleration of 40deg/s2 and speed of
30deg/s. For more fine-grained movements, the robot used linear
moves (e.g., when placing a brick) with the following parameters
for maximum tool acceleration and speed and no blend: movel(a =
0.5m/s2,v = 0.15m/s,r = 0).

The AssemblyHMD and WebClient, handle sending commands
from the operator to the robot and visualization of the assembly
sequence on the HMD and tablet respectively. This includes the
task list showing the name of the task, an illustration of the product,
the current status (not completable, completable, and completed),
a complete button, and an indicator of who will perform the task.
The WebClient also visualizes where the product is to be placed, by
showing an image of the current assembly progress with the current
product highlighted (see Fig. 3). For the AR HMD this is designed
as a situated visualization, as described in the following section.

Figure 3: Screenshot of the AssemblyWebClient on a tablet. Each
task item contains (A) the name of the task, (B) the product name,
(C) the current status, (D) an illustration of where the product must
be placed, (E) highlighted by a purple outline, (F) a complete button,
and (G) an icon indicating whether the operator or robot is assigned
to the task. This screenshot has been adapted for print, as a dark
color-theme was used for the study.

3.3 HMD interface
The interface of the AssemblyHMD, implemented in Unity
(2020.3.13f1) using the Mixed Reality ToolKit (MRTK v2.7.2),
includes a task list, instructions, the robot’s movement intent, and
controls for the robot. The principal features are described in more
detail below. To maintain a shared coordinate system between the
AR application and robot work space, a QR code is attached in the
work area with a known offset to the robot that forms a fixed point
in the real world. This marker is continuously scanned using the
built-in QR code tracking functionality of the HoloLens.

The AR task list is presented as a mid-air menu listing each task
to complete (see Fig. 4). When the operator selects a product to
be made, the assembly sequence definition is fetched and the list
is populated. However, not all tasks are immediately be workabl,
as some tasks have preconditions that need to be fulfilled. In our
scenario, only the first task is available initially and the next tasks
become active only once the first is completed. When designing
our task list interface, we took inspiration from a music playlist for
the layout and functionality: like enqueuing, playing, and pausing
songs, the operator can assign tasks to the robot and command it

1066



to “play” or “pause” its task. For each task we predefine which of
the agents is capable of performing it (either operator, or robot, or
both). Consequently, if the robot arrives at a task in the queue for
which the precondition(s) is not met, e.g., because the operator first
needs to finish another task, it must wait for this, and vice versa.

Figure 4: Visualization of the robot’s path (A) for solving a specific
task (C). In this case, picking up a green brick and placing it at
the appropriate position (B). Note: For better visibility in print, we
enhanced the path visualization.

Simple situated step-by-step instructions are conveyed to the op-
erator: When a task is available (i.e., preconditions are met), a
hologram of the product is shown at its intended position in the
finished product, as can be seen in Fig. 5. Similarly, if the opera-
tor selects a row in the AR menu to inspect it, a hologram of the
product required for that task in the construction space as a preview.
Additionally, holograms for all products of any incomplete tasks
that form preconditions are also visualized. To distinguish between
the robot’s and operator’s tasks, a blue outline is added to all tasks
assigned to the robot.

Figure 5: Two holograms are visualized in the workspace: The orange
brick on the left (B), that the operator is placing (A), and the green
brick on the right (C) that is worked on by the robot (D).

We show a situated visualization of the robot’s planned movement
path, with red arrows pointing in the direction of travel between
waypoints programmed into the robot’s movement. The path is
shown to the operator under two circumstances: Either if the robot is
performing a task, or if the operator is inspecting (i.e., has selected)
a task assigned to the robot.

4 EVALUATION

We evaluated the system described above in a user study with 18
participants. This section first describes our study design based on
our research goals, followed by the study task and overall procedure.

4.1 Study design
We compared three conditions in a within-group study design, coun-
terbalanced using Latin Square [8] with Williams design [57] to

compensate for first-order carryover effects. We varied the indepen-
dent variables interface type and task allocation:

cTab: Tablet Interface. The task list is shown on a tablet (WebClient,
running on a 12.9-inch iPad Pro) placed near the construction
space, manipulated through touch input. Building instructions
are presented as pictures comparable to paper-based LEGO
building instructions. The task allocation is predefined. The
interface can be seen in Fig. 3.

cAR: AR Interface. The task list is shown through the HMD (As-
semblyHMD running on a HoloLens 2) manipulated through
mid-air interaction. Building instructions are presented as
holograms that are superimposed on the construction space.
Further, a path visualization informs the operator about the
robot’s next movement. The task allocation is predefined.

cAR+t:AR Interface w. Task Allocation. The setup is identical to AR
Interface (cAR); however, task allocation is partially free so
the participant may reassign them if he/she would like to.

Our study aims to explore the following questions: (RQ1) How
does our proposed AR solution impact HRC in comparison to a state-
of-the-art (non-AR) interface? (RQ2) How can we effectively convey
robot intent and task instructions through situated AR visualizations?
(RQ3) How can we facilitate interactive task scheduling during HRC
and effectively represent multiple parallel sequential procedures?

We aim to answer these questions through two pairwise analyses
of our study conditions. Firstly, we compare cTab with cAR to eval-
uate our proposed AR interface in comparison to the state of the air,
i.e., touch panel. Thereby allowing us to explore the usability of the
mid-air menu and the usefulness of situated building instructions and
real-time robot information. We expect to encounter typical issues
of mid-air interaction (e.g., fatigue, lack of haptics, and erroneous
selection) compared to tablet interaction. However, we expect that
the AR interface will effectively support the task and that the situated
visualizations provide improvements to the operator’s awareness
and understanding of the collaboration with the robot.

Secondly, we compare cAR with cAR+t to explore how the abil-
ity to coordinate tasks through the task list affects participants’ sense
of control, confidence, and perceived effectiveness. We expect that
participants gain a stronger sense of control of the building proce-
dure when forced to engage more with the task list and explore the
system’s scheduling functionalities more in cAR+t. A comparison
of cTab and cAR+t is omitted as two factors are varied between the
conditions (both interface type and task allocation) and any resulting
effects could not be clearly attributed to either.

4.2 Study task
We designed an abstract DUPLO building task with the aim of
allowing study participants to engage with our proposed interface
using both the cTab and cAR, without the limitations, challenges,
and confounds involved in replicating a complicated mold assembly
setup. The use of DUPLO aims to simulate an arbitrary assembly
task, where the study participants collaborate with a robot in joining
multiple components to form a finished product.

With the use of DUPLO, the components do not vary in shape or
size and can be easily combined. These simplifications were made
to minimize the possible confounding factors between participants
of technical skills and dexterity required for real-world tools. We
argue that our simplified scenario is representative of HRC in assem-
bly tasks, allowing conclusions to be made on the efficacy of our
proposed task list and information visualizations in AR.

During the Trial runs, the participants were asked to collaborate
with the robot to assemble one of the three construction designs
shown in Fig. 6. These distinct designs, each consisting of 9 to
10 bricks on a base plate. Every participant created each of the
construction designs in the depicted order, while the order of the
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conditions was counterbalanced. construction designs used during
the Tutorial phase were similar to those of the Trial phase, although
with different colors to limit memorization.

Figure 6: The constructions built by participants in trials 1-3: Con-
struction 1 (left) and Construction 2 (middle) are each composed of
10 bricks, while Construction 3 (right) has 11 bricks. Bricks with a
magenta outline were pre-assigned to the robot.

Importantly, green bricks were only for the robot, while yellow
bricks were for both the robot and the participant to use. The remain-
ing colors, and the white base plate, were only for the participant.
The constructions were carefully designed to be of similar difficulty,
with a similar number of shared yellow bricks.

4.3 Participants
Overall, 18 participants were invited to complete the study. Partici-
pation was voluntary and, as is usual at our institution, no financial
remuneration was offered. The study participants (age: avg. 29.56
years, SD 6.76 years; gender: 4 female, 14 male) were predom-
inantly students (10/18) or researchers (5/18) at the Department
of Computer Science of our university. Most participants (15/18)
had a background in Computer Science , and half (9/18) had prior
experience with head-mounted AR technology.

4.4 Procedure
Participants arrived individually and were informed about the scope
of the study. They were then asked to complete a consent form,
confirming (1) understanding of potential risks, (2) voluntary par-
ticipation, (3) collection and use of anonymized data, and (4) that
consent can be revoked, and they can quit at any time. Participants
then filled out a demographics questionnaire and were introduced
to the study environment and tasks, including information on the
robot’s safety measures and the study procedure, see Appendix A.1.

The study was split into three consecutive phases: Tutorial, Train-
ing, and Trial. The Tutorial and Training phases were added to
ensure that each participant had sufficient knowledge to perform the
task. In the Tutorial phase, participants were taught how the two
interface types worked: (1) to inspect and allocate tasks using the
task list, (2) to locate building instructions, and (3) to interpret task
and robot-related information. For the less familiar AR interface,
some additional steps were required: after donning the HMD, partic-
ipants completed a quick eye calibration and a direct manipulation
task in which they practiced pressing buttons on a mid-air keyboard ,
as pilot studies had revealed difficulties with such interactions. The
participants were then informed about how the colored bricks were
allocated, as described in Sect. 4.2. Finally, the experimenter demon-
strated the robot’s safety measures, including having the participant
start a task, where the experimenter blocked the robot’s path with
their hands. The demonstration served to make the participants feel
more at ease near the robot.

After the Tutorial phase, participants completed one Training
session per condition (in counterbalanced order) during which the
experimenter offered assistance, e.g., reminding participants to mark
a task as complete. Furthermore, participants were encouraged to
think aloud, and we observed their interactions with the respective
interface to detect potential misunderstandings and issues.

After concluding the Training sessions, participants completed
the Trial phase in each of the conditions without any aid (repeating

the same order). After each study trial, two questionnaires were
administered. First a NASA TLX [23] with an added question
on Eye Fatigue, see Appendix A.2. Then followed our post-trial
questionnaire, in which participants were asked in detail about their
perceived performance, sense of control, and situational awareness
during collaboration with the robot, as well as their understanding of
the respective interface, the visualized instructions, and robot status,
see Appendix A.3.

The study concluded with a semi-structured interview, in which
participants were asked to reflect on their experience of using the dif-
ferent interface types, to gain further insights about the participants’
overall conception and understanding of the interface metaphor and
system functionality. Finally, participants received a short debrief
and were permitted to ask questions, before departing. The average
duration of the study was around 1 hour and 15 minutes.

5 MAIN FINDINGS

To analyze the collaboration between the human and the robot, we
explored whether both agents worked simultaneously or took turns,
what tasks participants preferred to delegate, whether the task list
metaphor aided their understanding, and how they perceived the
cAR generally. This was investigated through questionnaires, video
recordings, interaction logs, and interviews. To analyze interview
transcripts and observations from the video recordings (obtained
from three angles: camera 1, camera 2, and HoloLens) we clus-
tered similar findings into groups (affinity diagram). For statistical
analysis, we used the Wilcoxon signed-rank test (paired groups)
or Friedman tests with post-hoc Wilcoxon signed-rank tests with
Bonferroni correction (more than two groups) in SPSS. Plots were
generated using the Matplotlib package of Python [40].

To summarize the main findings: (1) the participants and robot
worked in parallel, (2) two strategies were generally used to divide
the work, and (3) the participants were generally aware of the robot’s
next action. The following sections offer further details.

5.1 Collaboration dynamics during assembly

An important part of the system design was to facilitate parallel
execution of assembly sequences, i.e. by ensuring that the participant
had the needed information to confidently work together with the
robot. Thus, two important questions arise: How did the participants
and robot work together, and how well was this supported by the
presented information?

Our questionnaire results reveal that participants generally felt
in charge of the building task, which was similar across all condi-
tions (Q1), as can be seen in Fig. 7. They even felt similarly in
control of the robot during the collaboration (Q13) across all condi-
tions. Interestingly, in the interview, some participants commented
that there was no real need to be in control of the robot, as it was
completing its tasks independently. Further, when asked about col-
laborating with the robot (Q18), participants felt significantly more
like they were working together in cAR compared to cTab (cTab vs.
cAR: p < .025, cAR vs. cAR+t: p = 0.03; correction for multiple
comparisons: α = 0.025).

5.1.1 Work happens in parallel

Interaction logs reveal when tasks were initiated by the robot, reas-
signed by the operator, or completed by either agent. Unfortunately,
determining the initiation of a task by the operator, and therefore
also individual task completion times, is challenging, as participants
could work on multiple tasks simultaneously, might be interrupted,
or could briefly abandon their task to coordinate with the robot. Nev-
ertheless, illustrating individual interaction sequences offers some
insight into the dynamics of cooperation. For example, the exem-
plary timelines (p9, p13) illustrated in Fig. 8 show that the robot
was continuously busy throughout the entire assembly process (blue
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Figure 7: The questions from post-trail questionnaire were rated for
cTab, cAR, and cAR+t.

bar), indicating that the robot was not actively stopped by the partic-
ipant. The green bars show that participants worked on their tasks in
parallel and completed these independently of the robot. Further, in
most cases, tasks were distributed evenly throughout the assembly
procedure.

Figure 8: These timelines from two random samples (left: P9, right:
P13) show active working times of the participant and robot on their re-
spective tasks in each of the conditions. Robot activity is represented
by blue bars, with the start and end of a task indicated by a yellow
arrow and black line respectively. The fade-in of green bars indicates
the estimated start time of the participant, and again a black line
shows task completion. Such plots were analyzed for all participants.

Video analysis further reveals that the interactions between the
participant and robot mostly followed a rhythm: while the robot
was in the process of picking up a brick, the participant would place
one, then the participant would monitor the overall procedure and
determine their next steps while the robot would finalize its task. In
multiple instances, the participant was faster and thus had to wait
for the robot to complete its task before being able to proceed.

Analysis of recordings further revealed that when the participant
and robot were to place a brick simultaneously, the participants
would wait for the robot when using the cTab. But when using the
cAR (cAR + cAR+t), they would immediately complete their task.
Interestingly, we found no significant difference in task completion
time across conditions.

5.1.2 AR is helpful to determine the status of the robot
As can be seen in Fig. 9, participants generally found the AR inter-
face helpful in determining the status of the robot (Q9), they found
the path visualization useful (Q10), and it helped them to determine

the robot’s next actions (Q11). A further indicator for determining
the usefulness of the cAR could be the number of occurrences when
the participants and robot were simultaneously active in the work
area. We found a total of 21 such occurrences, i.e. both were about
to place a brick. Counting these per condition, we observed notably
less simultaneous activity with cTab(3 occurrences), compared to
cAR (18 occurrences; cAR: 6 + cAR+t: 12). This indicates that par-
ticipants were more likely to work close to the robot when situated
robot status visualizations were available.

We occasionally observed that participants moved a DUPLO brick
from one hand to the other before placing it. We learned in inter-
views that this was done to prevent collision with the robot that was
simultaneously moving in the task space. The path visualization was
mentioned as helpful for planning the action, preventing alternative
strategies, such as pausing the robot, or waiting for it to finish.

Figure 9: These questions from post-trial questionnaire were rated for
cAR and cAR+t. *Note: to aid understanding here the scores for Q12
are inverted and the statement is positive.

5.2 Task allocation: share equally or all by myself
The third condition (cAR+t) gave participants an opportunity to
redistribute tasks between themselves and the robot, to investigate
the usefulness and usability of the task list. They were allowed to
modify the playlist at any point during the assembly procedure and
could make use of the pause function to gain time for this. Due to the
counterbalanced order of conditions, participants completed this task
either with C1, C2, or C3 (see Fig. 6). Each of these constructions
involves 4 yellow bricks that could be placed by either agent. By
default, these exchangeable tasks were fairly split between the robot
and the participant, i.e., 2 yellow bricks each.

Most participants (12 out of 18) reassigned at least one task and
almost all did this before completing their own first task. One
participant forms the exception, as they also reassigned a task during
the task. Looking at how the participants reassigned tasks, two
strategies emerge: “all by myself” and “I do left, you do right”, as 6
participants chose to reassign as much as possible to themselves and
4 participants tried to divide the tasks equally while dividing up the
workspace. As a side-effect of robot operation speed, participants
who reassigned more tasks to themselves were generally faster to
complete the assembly sequence.

A section of the post-trial questionnaire (Q6-Q8) was dedicated
explicitly to evaluating task allocation through the task list in the
cAR+t condition. The results illustrated in Fig. 10 reveal that most
participants felt it clear which tasks could be delegated (Q6) and
they were also able to understand the sequence and organize tasks in
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the form of a “task list” (Q8). While most participants found it easy
to reassign tasks through the AR interface (Q7), some disagreed
strongly with this statement. The interviews may shed light on
reasons for such ratings, as some participants reported difficulties in
interacting with the buttons of the AR menu (Fig. 4).

Figure 10: Questions 6-8 from the post-trial questionnaire referring
to task scheduling were rated only in AR Interface w. Task Allocation.
Most participants found the task structure clear (Q6), easy to use (Q7)
and the task list convenient (Q8).

5.3 Step-by-step instructions in AR
The situated AR instructions for assembly were predominantly per-
ceived as clear (Q12), see Fig. 9.Across all conditions instructions
were easy to understand (Q4; cTab: mean = 6.28,SD = 1.13, cAR:
mean = 5.78,SD = 1.31, cAR+t: mean = 5.5,SD = 1.65; cTab vs.
cAR: p = .21; cAR vs. cAR+t: p = 5.87). Measures of task com-
pletion time and observation of participants support that there was
no difference between the 2D instructions on the tablet (cTab) or
the 3D hologram (cAR) with regard to supporting the task.

However, across all conditions, the results of the NASA TLX
questionnaire [23] found comparable indications of Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort, and
Frustration (no significant effects). The only significant effect was
found regarding Eye Fatigue, which was significantly higher for the
cAR compared to the cTab(cTab: mean = 1.17,SD = 0.38, cAR:
mean = 2.89,SD = 1.71; cTab vs. cAR: p < .01; correction for
multiple comparisons: α = 0.025).

5.3.1 Breakdowns: accidentally doing the work of others
Video analysis revealed three main user errors: (a) doing a task
that is assigned to the robot, (b) wrongly positioning a part, and (c)
marking a task as complete without doing it.

Error type (a) was counted 3 times in cTab while 3 were recovered
(i.e. the participant was able to correct the error before a subsequent
task failed), and 5 errors occurred for the AR Interface (with task
allocation) while 2 were recovered. A more detailed investigation
into errors where the participant did a robot task (a), revealed that in
3 out of 3 instances for the tablet, and 3 out of 5 instances for the
AR interface, the participant actually had an assigned task with the
same type of brick (e.g., an orange brick) and apparently confused
the two. Furthermore, in three instances where the cAR was used,
a path visualization was active that indicated the robot was placing
that particular brick, which should have provided an additional clue
for preventing the error. Error type (b) happened 2 times for cTab
with none recovered, and 3 errors times for cAR with 2 recoveries.
Lastly, error type (c) happened only once for cAR without recovery.

6 DISCUSSION

Based on the evaluation presented in this paper, we will discuss 1)
that participants seem to be more inclined to work simultaneously
with the robot when using AR (working in parallel). Based on this,
we propose design guidelines for how and when robot intent should
be communicated. 2) the strategies for (dynamic) task allocation:

“All by myself” or “I do left, you do right”. Here we propose further
research on user preferences regarding task allocation. 3) general
findings when using AR to support human-robot collaboration. In
this context, we encourage further exploration of multi-modal in-
teraction to limit context switches and ensure an enjoyable user
experience. Lastly, we reflect on the limitations of the user study.

6.1 Supporting operators’ awareness of the robot status

We explored two methods of communicating the robot’s intent: path
visualization (Fig. 4) and holograms (Fig. 5). Based on previous
work, e.g., [22, 48, 52], we expected that visual feedback of the
planned robot movement would support the operator’s situational
awareness. This seems confirmed by our evidence from question-
naires, observation and interviews, as it allowed participants to better
coordinate their movements and manipulations with respect to the
robot. For example, when using cTab, participants frequently com-
pleted their own task only when the robot had finished its last action.
In contrast, this need to wait for their “turn” to manipulate objects
in the joint workspace was not apparent with cAR, and analysis
of video recordings confirms more frequent simultaneous activity.
Arguably, the path visualization made the participant more aware of
the robot’s action and more confident in concluding their own part.

Importantly, it should be noted that we investigated only one type
of path visualization and think that more exploration is needed, as
different contexts might call for different granularity of visualiza-
tions. For example, in some scenarios it may be more beneficial
to visualize just parts of the path or the robot, to address potential
limitations of visual clutter, cognitive load, etc. Variations have been
explored in [10, 22], but comparison and scenario-dependent design
guidelines appear to be missing.

Interestingly, some participants indicated that they did not ac-
tually need to pay much attention to the path visualization during
the study trials. A contributing factor for this may be the informa-
tion already conveyed through holograms and the predictability of
the robot, which made it easy for participants to determine what
would happen next. While we think it reasonable that this would
change in a longer or more complex task, future work should explore
whether predictability makes path visualizations redundant or even
detrimental (e.g., due to visual clutter and system complexity).

Related to the predictability of robot movements, some partic-
ipants remarked that the robot moved quite organically or almost
human-like. This is an interesting avenue for research [6, 20], and
may in future revealwhether more organic or natural movements
increase the operator’s willingness to collaborate closely with the
robot.

Finally, apart from providing information about the robot’s inten-
tion, the presented holograms also effectively guided participants in
the assembly task, which was described as useful. In comparison to
the image-based instructions on the cTab, situated visualizations pro-
vide the benefit of revealing needed changes in the actual workspace,
where unexpected discrepancies or issues can become obvious. How-
ever, the holograms likely also caused the majority of user errors and
breakdowns (Section 5.3.1). For example, insufficient tracking accu-
racy of the cAR could lead to misalignment of holograms. Further,
some participants accidentally completed tasks that were assigned
to the robot. Here the path visualization may have provided helpful
additional clues that in three instances potentially led to the recovery
from such errors in cAR. However, on three other occasions, the
error was not corrected despite path visualization, indicating that
its saliency may be insufficient. This suggests the need to enhance
the distinction between an operator and robot assigned task. Here,
an advantage of the cTab is the possibility to compare the current
actual build with an illustration of what is supposed to be built. Thus,
supporting this in AR would be interesting. However, here the chal-
lenge of occlusion must be addressed as the operator must see both
the real and the overlaid virtual object at the same time.
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6.2 Task allocation: interface and strategies
With our proposed scheduling interface (task list), we aimed to en-
able novices to effectively plan and coordinate tasks of an assembly
procedure between a robot and a human. Overall, our findings sup-
port that the task list was well understood, supported inspection of
the overall assembly sequence and enabled participants to reassign
tasks as well as undo reassignments. Importantly, the task list clearly
revealed the required order of operations and which operations could
be completed by each of the agents. However, some participants
mentioned that a flat list does not convey parallel operations well.
Further, some participants reported difficulties with manipulating the
buttons on the AR menu, which is a well-known challenge of mid-air
interaction and could be addressed by supporting ray-casting.

The results of our evaluation found two primary strategies for
task allocation: “all by myself” and “I do left, you do right”. These
suggest two user preferences, which, to our knowledge, need further
exploration. Firstly, the “all by myself”-strategy might suggest
that some participants did not want to twiddle their thumbs while
the robot was in progress, as the robot takes comparatively long to
complete tasks due to its slow movement speeds. This may have been
a strong factor motivating their task assignment choices. Should
this be the case, HRC systems, and their task allocation strategies,
should ensure that work can be done in parallel, but also prefer a
busy operator. Secondly, task allocation strategies should investigate
how tasks can be allocated automatically based on territories or
zones, such that the human and the robot interfere less with each
other. This has to some extent been explored by Mahadevan et
al. [34]. Compared to most related work that typically focuses on
completion time [27,45,53] and ergonomics [16,31], task allocation
should also attempt to include user preference and territoriality.

A limitation that should be noted, is that our study tasks may have
offered few options for task reassignment: only four elements could
be assigned to either agent, and there was no strict need to update
the strategy during the assembly sequence. Thus, the study did not
explore the dynamic task allocation to its fullest.

6.3 Using AR to collaborate with a robot
The results showed that the participants generally found the cAR
easy to use and understand. However, reported issues and observa-
tions of user interactions provide some directions for future explo-
ration. As previously mentioned, utilizing hand tracking with the
HoloLens 2 for button interaction and scrolling in mid-air turned out
to be a challenge. Pilot studies revealed that this issue could to some
degree be compensated by extended training of the mid-air interac-
tion technique in the user study. In future work, such issues could
be alleviated by supporting different interaction techniques (e.g.,
ray casting) or other modalities, such as eye-tracking. In the future,
we aim to explore additional input modalities, such as voice [3, 32]
and gaze-based interaction [34], instead of the potentially fatiguing
mid-air interaction. Alternatively, a more sophisticated system might
explore auto-complete functionality, such that it automatically de-
tects and registers when a task is completed. By thereby limiting the
required interaction frequency with the task list, context switches,
which we already see reduced in cTab (i.e., gaze back and forth
between tablet and workspace), can be avoided even further.

As expected, the perceived eye fatigue was higher when using
the cAR, as the HMD (HoloLens2). However, no increase in mental
demand or frustration was observed, despite the discomfort and
above-mentioned challenges of menu interaction. Other studies have
found lower mental demand for AR systems in a robotics context
have been found [50].

While our findings indicate that our design of the task list interface
was useful and easy to understand, when explicitly asked about the
playlist metaphor in the interview, the participants explained that the
metaphor did not work due to the lack of a progress bar, tasks not
disappearing after being completed, and the possibility of some tasks

being done in parallel whereas a music playlist is always sequential.
One participant mentioned that a better metaphor might be that of
composing music, where individual members of the “band” work on
their tracks in parallel and collectively produce a final product when
all their efforts are combined. These comments provide valuable
input for refining our design in the future.

While we have explored two distinct interfaces (AR and tablet) to
support HRC, multimodal interfaces [3] may offer further benefits.
In this regard, hybrid user interfaces [18] offer an interesting avenue
for future research.

6.4 Shortcomings of the Evaluation Scenario

Our presented system was evaluated in a lab study, involving an
abstract artificial assembly task that permitted the exploration of
the system. While this simplistic assembly task aimed to minimize
the risk of confounding factors, it may be argued that the abstract
scenario limits the validity of our study. For example, that the overall
number of errors was so low, may be attributed to the simplicity of
the task and the ability to identify correct placement by counting
the knobs on the DUPLO bricks. Indeed, an extensive field study,
involving a real assembly task and domain experts, is needed to con-
firm the findings and may reveal further challenges and unexpected
findings. This is a task for future work, for which our work and
findings provide a basis.

The study did not have a condition where the tasks should be
completed in sequential order, which would have been beneficial
to establish an estimate of whether the task execution was faster
compared to the parallel approach. However, as speed was not a
primary objective of the exploration and the results confirm that
parallel work was happening, it is not considered a major issue.

A limitation of the AR interface is the current use of a menu,
where the operator needs to split their attention between the list and
the workspace (similar to the tablet). A potential solution could be
to replace the list with in-situ objects that are interactable. Besides,
this may also be a reason behind the absence of differences in task
performance between the AR-based interface and the tablet interface.

Finally, our evaluation is limited by our narrow participant sample,
skewing towards male participants with prior VR and AR experience.
The main reason for this was the limited availability of study partici-
pants at the time of evaluation, which took place under restrictions of
the COVID-19 pandemic. A follow-up study will need to investigate
the generalizability of our findings to the target domain of assembly
tasks completed by professionals in the manufacturing industry.

7 CONCLUSION

In this paper, we proposed, built, and evaluated an AR interface
supporting collaboration between a human operator and a robot for
assembly tasks. We present an AR interface that supports parallel
execution of tasks and allows for reassigning tasks to the robot or the
operator. Further, we designed situated building instructions in the
form of holograms and informed the operator about the robot’s status
by visualizing the robot’s movement path through the workspace.
We evaluated our AR Interface in comparison to a state-of-the-art
2D control panel on a touchscreen device (Tablet Interface) in a
user study with 18 participants. Our findings confirm that our AR
interface can successfully support operators in coordinating and
performing assembly tasks in parallel with a robot. In particular, the
situated visualization of the robot’s movement path and holographic
building instructions were effective in supporting workspace aware-
ness, confidence, and perceived control. Furthermore, by analyzing
the participant’s interaction with the system, we found two strategies
for task allocation: “All by myself” or “I do left, you do right” Our
research thereby provides a basis for future work to build on for
supporting parallel and interdependent execution of tasks between
humans and robots.
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