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Figure 1: Experimental setup. Top-left: Participant in the glider wearing an EEG cap (i) and the HMD (ii). Top-right: Virtual glider
approaching a target. Bottom-left: Target error: The target jumped to the right. Bottom-right: Passive error. The glider rotated to the
right. Mind that in the passive and active conditions, the participant’s whole field of view changed, whereas in the target condition,
only the target was relocated. The dashed lines were added for illustration purposes only, they were not visible to the participants.

ABSTRACT

Error perception is known to elicit distinct brain patterns, which
can be used to improve the usability of systems facilitating human-
computer interactions, such as brain-computer interfaces. This re-
quires a high-accuracy detection of erroneous events, e.g., mis-
interpretations of the user’s intention by the interface, to allow
for suitable reactions of the system. In this work, we concen-
trate on steering-based navigation tasks. We present a combined
electroencephalography-virtual reality (VR) study investigating dif-
ferent approaches for error detection and simultaneously exploring
the corrective human behavior to erroneous events in a VR flight
simulation. We could classify different errors allowing us to ana-
lyze neural signatures of unexpected changes in the VR. Moreover,
the presented models could detect errors faster than participants
naturally responded to them. This work could contribute to devel-
oping adaptive VR applications that exclusively rely on the user’s
physiological information.
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1 INTRODUCTION

Human-computer interactions (HCIs) are prone to misinterpretations
of the user’s intentions by the system’s interface. These errors in
the interaction with a system can lead to a negatively perceived
user experience. Methods aiming to improve the user experience
in the presence of such errors could include real-time error detec-
tion, which would subsequently enable the system to take corrective
actions. In this work, we present an approach to detect erroneous
actions based on electroencephalographic (EEG) signals and addi-
tionally analyze the participant’s corrective behavior in comparison.

Multiple studies investigated the physiological correlates of error
processing, most of them using EEG signals, i.e., electrical brain
signals recorded from the scalp [18, 23]. It has been shown that
committing or observing errors elicits a change in the amplitude of
the EEG signals. This event-related activity is commonly referred
to as error-related potential (ErrP). ErrPs have already been used to
detect errors online, i.e., in real-time, in non-immersive scenarios
[22, 34] and realistic tasks [35, 37, 77].

Only a few studies explored error processing in virtual reality
(VR). Previous works focused particularly on two areas, i.e., errors
elicited by (i) violations of agency [51, 58] and (ii) unrealistic or
erroneous interactions with the VR, such as tracking errors [23,
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63, 64]. Error detection was performed in some of these works
[23, 63]. However, they did not attempt to find the time point when
errors occurred. Nonetheless, this is necessary for the system to
be reactive in the event of an error. Therefore, errors need to be
detected asynchronously, i.e., independent of the error event [41].

Multiple studies analyzed the utility of incorporating the decoding
of error processing in brain-computer interfaces (BCIs) [59, 74].
In essence, there are two existing approaches to utilize ErrPs in
BCIs, i.e, (i) to correct erroneous actions [61], and (ii) to adapt the
error detection model such that the model’s classification accuracy
improves over time [34]. However, none of these approaches have
been studied in the context of VR. Possible goals for combining
ErrPs and VR include a dynamic adaption of the visualization or
interaction as a result of detected error events, or by providing visual
aids for the user [46]. Further, error detection based on ”fast” brain
responses might even create a gain in time compared to the ”slow”
physical reactions to them. This could be of practical use, depending
on the application, or simply foster a smoother interaction with the
VR. Following these considerations, we formulated two research
questions this work mainly addresses:

• RQ1: Can we estimate the time point of an erroneous event in
VR using EEG data?

• RQ2: Can we detect erroneous events faster than participants
would naturally react to them?

To answer these research questions, we performed asynchronous
error detection in a VR navigation task. We presented different types
of errors to the participants, allowing us to study the reaction to sud-
den changes in the environment. We designed three different error
classification models that are trained following a generic approach,
a personalized approach, and a combination of both. Personalized
models usually require a calibration phase in which EEG signals
are analyzed to train the classifiers before they can be used in BCIs.
Alternatively, generic models use signals of other users, which al-
lows for immediate application [36]. There is evidence that generic
classifiers offer reasonable performance, which is, however, in gen-
eral below the performance of personalized models [30, 35]. We
hypothesize to see a similar effect in the results obtained with our
models. The current work could contribute to the design of adaptive
and corrective systems in VR applications, relying on the analysis
of the users’ physiological information.

2 RELATED WORK

Virtual navigation techniques allow users to explore environments
at various scales [42]. We concentrate on techniques that provide
continuous control of direction, so-called steering-based locomotion
techniques, incorporating physical steering props [6, 32]. These
techniques are common in 3D first-person games [7, 32, 52], but
also when it comes to controlling vehicles that are modulated by
the simulation of the vehicle’s physical properties [5, 62]. Interested
readers are referred to Al Zayer and colleagues [76], who provided
a survey on virtual locomotion.

In the present study, we investigated the neurophysiological re-
sponse to error perception while navigating a virtual vehicle. There-
fore, the following sections provide a brief overview of the research
on error perception, its neurophysiological correlates, and its previ-
ous application in BCIs and VR.

2.1 Background on ErrPs

EEG is a non-invasive technique to study electrical brain activity
with electrodes attached to the scalp. First experiments to study error-
related brain activity date back to the beginning of the 1990s [18,23].
Studies found a distinct event-related potential (ERP) in the EEG
signals after participants committed errors in speed response choice
tasks, commonly referred to as ErrP. ErrPs are typically found as a

result of identifying erroneous actions, e.g., after participants com-
mitted errors. ErrPs are often characterized by an initial negative
peak, i.e., the error-related negativity (ERN), followed by a posi-
tive peak, i.e., the error positivity (Pe). These components usually
appear in the first 500 ms after the error event in the frontocentral
and centroparietal regions of the brain [19]. Outcome errors are
found when motor actions do not result in the desired goal [45].
Interestingly, similar patterns were found in the absence of motor
response, e.g., while observing erroneous actions [60], or due to
a sudden, unexpected change in the environment. The last type is
referred to as target error and was first described by Dietrichsen and
colleagues [17], who studied the influence of target jumps on par-
ticipants who moved a cursor toward the target. Finally, it has been
demonstrated that ErrPs can be elicited in interactions with agents,
i.e., interaction errors. These errors are of special interest when
interacting with BCIs and are elicited after a misinterpretation of
the user’s intention by the interface. Ferrez and Millán [20] studied
errors in a simulated interaction with a robot, that could be navigated
to one side by manually pressing the corresponding key. In 20% of
the occasions, interaction errors were elicited by a movement in the
opposite direction of the user’s intention.

Notably, it has been shown that ErrPs are influenced by engage-
ment. In an arrowhead flanker task, Hajcak and colleagues [26]
motivated participants with monetary compensation for correct re-
sponses, i.e., a higher monetary compensation in 50% of the stimuli
and a lower compensation in the remaining 50%. The ERN was
significantly larger after mistakes in high-value stimuli.

2.2 ErrPs in BCIs

Until today, the main application of ErrPs is as control signals in
BCIs [8,74]. BCIs can use EEG signals to, e.g., decode the user’s in-
tentions and generate commands based on them. A misinterpretation
of these intentions would lead to erroneous commands. Successful
detections of these erroneous commands could enable BCIs to take
corrective actions, e.g., stop the execution of the commands or per-
form counteractions [59, 61]. Error detection on a stimulus-locked,
single-trial basis has been performed in numerous experiments with
accuracies well above 80% [16, 20, 21, 63]. However, BCI research
is developing to give users continuous control of machines. Incorpo-
rating ErrPs in such systems requires asynchronous error detection,
which has been studied in offline [27, 37, 47–49, 69] and online [35]
scenarios. There is evidence that error classifiers work stable over a
period of several months [21], or when trained with data from other
participants, i.e., generic classification [35,36]. Even a transfer from
able-bodied participants to participants with high spinal cord injury
could be presented [35]. Such approaches reduce the time to train
classifiers prior to using BCIs and hence improve usability [11].

Another approach to utilize ErrPs in BCIs, besides correcting
erroneous commands, is adaptive learning [4]. Leera and colleagues
[34] instructed participants to covertly shift their attention to either
the left or right side of a screen. Identified misclassifications of
the participant’s attention were used to adapt the parameters of
their binary error classification model. The offline classification
accuracy could be significantly improved compared to the static
error classification. Chavarriaga and colleagues [10] provided a
comprehensive overview of the use of ErrPs in BCIs.

2.3 ErrPs in VR

Most experiments studying ErrPs focus on non-immersive settings
[27, 28, 48, 56, 57, 69], some include real-world scenarios, such as
driving a car [77] or controlling a robotic arm [35, 37]. However,
there is increasing interest in ErrPs in the context of VR. Padrao
and colleagues [51] were among the first to investigate neurophysio-
logical signatures of error processing in VR using a head-mounted
display (HMD). One of the experiment’s objectives was to study
the response to violating agency by providing wrong feedback from
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the avatar, i.e., sometimes the avatar’s hand moved in the opposite
direction of the participant’s hand [55]. Similarly, Raz and col-
leagues [58] studied, among others, the responses to unexpected
hand bounces from the avatar. Other studies focused on errors in
the interaction with the VR [24, 25, 63, 64]. Unrealistic interactions
with the VR were investigated by giving visual [64] or vibrotac-
tile [24, 25] feedback when tapping a virtual object, while the feed-
back was given prematurely on a few occasions. Si-Mohammed
and colleagues [63] studied different error types, such as errors in
tracking objects, giving wrong feedback after task completion, or
anomalies in the environment.

Some studies [53, 54] used different visualization techniques, i.e.,
the CAVE automatic virtual environment (CAVE) system [12], study-
ing the observation of erroneous actions in first- and third-person
perspectives. Likewise, Spinelli and colleagues [68] instructed par-
ticipants to observe an avatar in a reaching-to-grasp task that could
perform correct or erroneous actions with either their left or right
hand. A similar experiment was conducted with participants suffer-
ing from higher-order motor control disorders [67].

3 MATERIALS AND METHODS

3.1 Participants

Nineteen volunteers (27.6 ± 2.3 years old, mean ± standard deviation
(SD), seven female) participated in the study. All participants had
normal or corrected-to-normal vision and were free of any known
neurological diseases, 13 self-reported having only little or no ex-
perience with VR. After instructions, all participants gave written
informed consent to take part in the experiment. The study was con-
ducted according to the Declaration of Helsinki (1975) and approved
by the ethical review committee of Graz University of Technology.
Participation was honored with vouchers worth 20 euros.

3.2 Apparatus

The VR environment was shown with an HP Reverb G2 Omnicept
HMD (HP, CA, USA), which includes a built-in eye tracking mod-
ule (Tobii AB, Danderyd, Sweden) that records data at a sampling
frequency of 120 Hz. The VR and the experimental paradigm were
designed in Unity1.

EEG signals were recorded using 63 actively shielded, gel-based
Ag/AgCl electrodes (eegoTMsports, ANT Neuro, Hengelo, The
Netherlands). The electrodes were positioned according to the 10-5
international system [50] at Fp1, Fp2, AF3, AFz, AF4, F7, F5, F3,
F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6,
FT8, FFC3h, FCC1h, FCC2h, FCC4h, T7, C5, C3, C1, Cz, C2, C4,
C6, T8, CCP3h, CCP1h, CCP2h, CCP4h, TP7, CP5, CP3, CP1, CP2,
CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO3, POz, PO4,
O1, Oz, and O2. The ground and reference electrodes were placed
at AFz and CPz, respectively. The signals were sampled at 512 Hz.

For the acquisition and synchronization of multiple data streams
(EEG, gaze direction, controller movement, events) we utilized the
lab streaming layer protocol2.

We recorded further physiological data, i.e., electrocardiogram
and pupil size [72, 73], which are not part of the analysis presented
in this work and hence disregarded in the following deliberations.

3.3 Experimental procedure

Prior to the recordings, the 63 EEG electrodes were mounted such
that the impedances between electrodes and scalp were below
10 kΩ to facilitate high signal quality. Additionally, the EEG signals
were visually checked right before the recordings and monitored
throughout the experiment.

Over the course of the experiment, participants sat comfortably
in an immobile glider (Ka 8B, Alexander Schleicher, Germany),

1https://unity.com/
2https://github.com/sccn/labstreaminglayer

as shown in Fig. 1. The experiment consisted of two blocks, both
consisting of three phases, i.e., (i) eye-tracking calibration of the
HMD, (ii) acquisition of eye movement data for artifact removal (see
Sect. 3.3.1), and (iii) four (first block) or five (second block) flight
simulation runs (in total nine runs, see Sect. 3.3.2). Between each
run, participants took breaks of one to five minutes without removing
the HMD. The HMD was only removed for a break of approximately
ten minutes between the two blocks. Removing the HMD only once
reduced the possibility of electrode displacements or loss of contact
with the scalp. However, we checked the impedances again before
the second block. Participants completed up to two runs before the
first block to familiarize themselves with the flight simulation.

To reduce electromyogenic artifacts in the EEG signals [44],
participants were instructed to avoid non-task-related movements,
e.g., head movements, during the recordings.

3.3.1 Acquisition of eye movement data

Eye movements and blinks are common sources of noise present
in most EEG recordings [29, 70]. To correct eye movements and
blinks, we used the sparse generalized eye artifact subspace sub-
traction algorithm (SGEYESUB), for which participants repetitively
performed a series of eye-related artifacts. We refer to the original
work from Kobler and colleagues [31] for a detailed description of
the algorithm. To use the SGEYESUB with an HMD, we redesigned
their proposed paradigm in Unity. Eye movement data were recorded
for approximately five minutes in each block.

3.3.2 Flight simulation

The participants were instructed to navigate a virtual glider through
targets, i.e., rings (see Fig. 1). As the glider moved at a constant
speed by itself, participants could navigate (to the left, right, up,
and down) using the control stick of the physical glider, to which
one HMD controller was attached, as shown in Fig. 2. This should
enhance the realism of the simulation.

Figure 2: Participant using the control stick of the glider, to which an
HMD controller was attached.

Each flight simulation run consisted of 70 targets, the first one
always appeared straight ahead of the glider. As the glider passed a
target, the next one appeared either straight ahead of it or displaced at
a fixed angle horizontally or vertically. Only one target was visible at
a time. Before 30% of the targets, an error event was triggered. Error
events were evenly distributed among the following three conditions
(seven errors per condition per run):

• target: The target unexpectedly jumped to its left or right,
about 1.6 s before the glider would have reached it.

• passive: Passive errors were only triggered before targets that
were straight ahead of the glider. With such targets, there was
no need for active steering to reach the target, hence partici-
pants were in a passive state. In the passive condition, a torque
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was applied to the virtual glider, starting between 1.1 s and
1.8 s before reaching the next target. The torque led to a sudden
and continuous rotation of the glider for 0.6 s.

• active: Like the passive error, but only triggered before tar-
gets with horizontal or vertical displacement. Reaching these
targets required active navigation, hence participants were con-
sidered to be in an active state.

Participants were free to decide whether they wanted to correct for
errors, e.g., try to reach suddenly displaced targets, or not. This was
essential to investigate the natural reaction behavior of participants.
Ten participants showed an apparent reaction to the error events,
nine participants did not try to reach the targets after errors were
triggered.

To prevent adjustments to the paradigm, the positioning of the
targets and the timing of the error events were randomized. The
average duration of one run was four minutes and 45 seconds, hence
a new target appeared approximately every four seconds.

3.4 Signal processing

Behavioral and physiological data were processed and analyzed
offline in Matlab R2022a (The MathWorks, MA, USA) utilizing the
EEGLAB toolbox (v2022.0) [14].

3.4.1 Behavioral data processing

To study the participants’ natural reactions to the errors, we recorded
data related to the controller movement. Since target jumps (target)
and glider rotations (passive, active) exclusively happened along
the horizontal axis (e.g., targets never jumped upwards), corrective
movements of the participants were only required in the horizontal
direction, too. Hence, we only considered horizontal controller
movements for the behavioral analysis.

The controller displacement data were recorded once per frame.
First, we resampled the data from the horizontal displacement to
64 Hz to reduce computational effort. We then segmented the data
into epochs of 1.5 s using a window of [-0.5 1] s relative to the error
onsets. Then, we baseline-corrected the epochs by subtracting the
mean value of the [-0.5 0] s window prior to the error onset. We only
considered the absolute controller displacement values, and thus we
disregarded information on whether a controller was moved to the
left or right direction.

Next, to detect movement onsets, we defined an individual thresh-
old for each participant and condition. Therefore, we calculated the
first derivative of the controller displacement. From this data, we
defined a vector b containing the maximum values of each trial in the
baseline window and calculated the threshold as mean(b)+2 ·SD(b).
The reaction time for each trial was defined as the time the first
derivative of the displacement exceeded the threshold the first time.
We only considered exceedances within a window of [0.2 0.7] s after
the error onset to exclude non-error-related controller movements.

Ten of the participants showed corrective behavior to errors, i.e.,
a controller movement after error events. On average, these ten
participants reacted in 78% of the error events.

3.4.2 EEG data processing

As a first step, we filtered the recorded EEG signals between 0.4 Hz
and 30 Hz and suppressed power line noise with a notch filter
at 50 Hz and 100 Hz, respectively (all filters were Butterworth,
fourth order, zero-phase). Artifacts stemming from eye movements
and blinks were removed using the SGEYSUB (see Sect. 3.3.2)
[31]. After, we applied another bandpass filter between 1 Hz and
10 Hz (Butterworth, fourth order, zero-phase) since numerous stud-
ies found the lower frequency bands to have an essential role in error
processing [39, 71, 75]. Subsequently, we resampled the signals to
64 Hz and removed the most frontal channels (Fp, AF) to minimize
residual eye-related activity in the data. Another approach to dealing

with eye-related artifacts is performing independent component anal-
ysis (ICA) [40]. This comes, however, with the disadvantage to be
applicable only for offline data analysis. Since we wanted to provide
tools for real-time error detection, we decided to use SGEYESUB,
as comparable studies have before [35, 37].

Next, we segmented the signals of the remaining 58 channels
into trials of 1.5 s. Trials belonging to one of the three error condi-
tions were extracted [-0.5 1] s relative to the error onset. Correct
trials were extracted [1.5 3] s after passing a target, no error was
triggered in this window. We rejected artifact-contaminated trials
based on amplitude threshold (exceeding ± 35 μV), kurtosis, and
abnormal joint probability (threshold of 5 ·SD for the last two) [15].
Further, we rejected trials based on visual inspection. Bad chan-
nels were identified based on visual inspection and variance. For
the last, we calculated the first and third quartile (Q1, Q3) and the
interquartile range (IQR = Q3−Q1) of the channel variances. We
interpolated channels with a variance greater than Q3+ 1.5 · IQR.
We rejected on average 12% of the trials and interpolated 1.5 chan-
nels per participant. Finally, we re-referenced the signals to the
common average [43].

3.4.3 Error detection

To compare the human reaction time to the detection time of our
error detection models, we asynchronously classified errors based on
a sliding window approach. We tested three different classification
models, i.e., (i) a fully generic classification, (ii) a generic classifi-
cation with personalized hyperparameters, and (iii) a personalized
classification, each of them having two classes, i.e, target vs. correct,
passive vs. correct, and active vs. correct. Models are described in
detail in the following sections. All models are only evaluated on
the ten participants that showed corrective behavior to errors. For all
models, we used the true positive rate (TPR), the true negative rate
(TNR), and the detection time as evaluation metrics. These metrics
are described at the end of this section.

Fully generic error detection For each participant, we trained
ErrP classifiers using the preprocessed EEG data from the remaining
18 participants (leave-one-out). As features for training the clas-
sifiers, we used all amplitude values from all 58 channels within
a window of [0.14 0.4] s after error onset. For correct trials, we
used the window [2.14 2.4] s after passing the previous target. In
this segment, most errors were triggered in error trials. To reduce
the number of features, we performed principal component analysis
(PCA) and kept the components that explained 99% of the data
variability as features, as suggested by other works [35, 37]. We
used these features to train a shrinkage linear discriminant analysis
(sLDA) classifier, which became a standard method in classification
problems with ERPs [3, 38]. For each classifier, we randomly chose
a subset of correct trials to maintain the ratio of 30% error trials to
70% correct trials from the initial experimental design (Sect. 3.3.2).

We tested each classifier asynchronously on the data of the par-
ticipant which were not used for training. Therefore, we slid a
260 ms window with a leap of 16 ms through each trial. We used a
softmax function to transform the linear scores of the classifier to a
probability perr. This probability denotes how likely an error event
was triggered during the evaluated window. We consider an error as
detected if perr exceeded a certain threshold τ for a minimum of k
consecutive windows. For the fully generic classification, we fixed
τ = 0.5 and k = 2 for all classifiers, similar to previous works [35,37].
In other words, we considered an error as detected if perr > 0.5 for
at least two consecutive windows.

Generic error detection with personalized hyperparameters
To improve the performance of the classifiers, we optimized the
hyperparameters τ and k. The model and computation of perr are
like in the fully generic classifier. To optimize the hyperparameters,
five-fold cross-validation (CV) was performed ten times on the
probabilities perr. To find the most suitable parameters, we varied τ
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from 0 to 1 in fixed steps of 0.025 and k from 1 and 6 and evaluated
the classifiers’ performances for each combination on the training set.
We used the optimal pair of parameters, i.e., the one that maximized
the product of TPR and TNR, for the test set. For each classifier and
participant, we computed the average TPR and TNR of the 50 folds.

Personalized error detection To evaluate the performance
of the personalized classifiers, we performed ten times five-fold
CVs on the data of one participant only. As training features, like
in the generic classifiers, we used all amplitude values from the
same windows, maintaining a 30% to 70% ratio for error trials to
correct trials. Again, we performed PCA for feature dimensionality
reduction. In each fold, we obtained a perr for each window in each
trial tested. We optimized the hyperparameters τ and k as described
for the generic classifiers. Again, we calculated the average TPR
and TNR for each of the 50 folds.

Evaluation metrics To evaluate the performance of the classi-
fiers, we used TPR (sensitivity), TNR (specificity), and detection
times. We considered a correct trial true negative (TN) if no er-
ror was detected during the entire trial duration. Subsequently,
we computed the TNR as the fraction of correct trials that are
TN. Similarly, we defined true positive (TP) trials as error tri-
als in which errors are detected exclusively within a window of
[0.1 0.6] s after the error onset. This is to ensure that we only con-
sider error detections that are related to error events. The calculation
of TPR is analogous to the TNR. Finally, we defined the detection
time as the time of the first error detection in each TP trial.

3.4.4 Statistics

We performed sample-wise statistical tests on the 19 participant
averages of the EEG data (see Fig. 4). For that purpose, we con-
ducted Wilcoxon signed-rank tests and applied the false-discovery
rate (FDR) procedure to correct for multiple comparisons [1,2]. Fur-
ther, we performed Wilcoxon rank-sum tests with FDR correction to
compare the reaction times between the first and the second block
for each error condition using all detected reactions (see Fig. 3).
Analogously, we compared the participant’s reaction times to the
error detection times of each model of the same condition.

4 RESULTS

4.1 Behavioral analysis

The results of the behavioral analysis are shown in Fig. 3. Fig. 3a
illustrates the averaged controller displacement for each error con-
dition, i.e., the reactive behavior of the participants as a result
of the error events. The average reaction times of the partici-
pants were 414 ms (target, in red), 427 ms (passive, in blue),
and 419 ms (active, in black) after the error onset. The devel-
opment of the participants’ reaction times is shown in Fig. 3b.
Here, the dashed lines are linear regressions of the correspond-
ing mean reaction times for each run and indicate an individual
trend for each block. The decline in the passive condition in the
first block is mainly driven by the slow average reaction in the first
run. However, statistical tests did not reveal a significant change
(alpha = 0.05) in the reaction times from the first to the second
block, which indicates that the participants had a consistent reaction
time throughout the experiment (Fig. 3c). For RQ2 we studied if
we can detect errors faster than the participants would naturally try
to correct them. In all conditions, the participants’ reaction times
were slower than the corresponding error detection time for all mod-
els. A comparison can be found in Table 1. Information about the
participants’ individual reaction times is depicted in Fig. 3d-f.

4.2 Electrophysiology

Fig. 4 presents the grand average EEG response to error processing,
i.e., the mean of the participant averages. ERPs are depicted for the
positions FCz, Cz, and Pz, the shaded areas indicate the standard

Table 1: Comparison of the grand average reaction times and error
detection times (mean ± SD).
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target 414 ± 35 368 ± 17 375 ± 15 375 ± 6

passive 427 ± 41 361 ± 27 376 ± 22 384 ± 13

active 419 ± 29 345 ± 13 372 ± 16 385 ± 7

error (SE) of the grand average ERPs. ErrPs are commonly defined
as the differences erroneous responses - correct responses [59]. In
our case, the grand average amplitudes of correct trials are very close
to zero throughout the trial, hence the presented ERPs are equivalent
to the respective ErrPs.

For electrode position FCz, which measures the activity of brain
areas that are usually most associated with error processing, the
ErrPs of all error conditions have an initial positive peak at ap-
proximately t = 190 ms after the error onset. Target errors (in
red) elicit subsequent negative (ERN) and positive (Pe) peaks
at 235 ms (amplitude of -0.4 μV) and 315 ms (4.16 μV), re-
spectively. ErrPs caused by active errors (in black) are delayed
compared to passive errors (in blue). For the passive condition,
we found an ERN at 250 ms (-0.27 μV) and a Pe at 345 ms
(1.3 μV), and for the active condition at 265 ms (-0.3 μV) and 390 ms
(1.08 μV). Grand average ErrPs of all error conditions display a late
negative component peaking at 470 ms (target), 485 ms (passive),
and 500 ms (active) in electrode Cz. Trials without error event
(correct) did not show any particular change in amplitude.

We performed sample-wise paired statistical tests for FCz, Cz, and
Pz, each comparing the grand average ErrPs of two error conditions
with one another. Significant samples, after FDR correction for
multiple testing (alpha = 0.05), for the three comparisons (target vs.
passive, target vs. active, and passive vs. active) are indicated by
dots below the corresponding ErrPs in Fig. 4.

ERN and Pe are commonly found as components of ErrPs and
appear mainly in the frontocentral and centroparietal regions of the
brain. This is particularly visible in the topographical distributions
of the averaged ErrPs of all 58 channels (see Fig. 4, bottom).

4.3 Error Detection

In RQ1 we wanted to analyze whether we could asynchronously de-
tect errors in this navigation task. Fig. 5 illustrates the classification
results of the three investigated error detection models described in
Sect. 3.4.3. As expected, classification accuracies, expressed as TPR
and TNR, improve when using personalized models compared to
generic models. We show the results for three binary classification
problems, i.e., each error condition vs. correct. We obtained the
lowest TPR and TNR with the fully generic classifier: average TPR
and TNR for target are 70% and 87%, for passive 60% and 74%, and
active 52% and 59%. Evaluation metrics improve when optimizing
τ and k. The average TPR and TNR for the optimized generic model,
computed as a mean of ten times five-fold CV are 76% and 91%
for target, 63% and 81% for passive, and 53% and 79% for active.
We achieved the highest TPR and TNR performing a personalized
classification (with optimized hyperparameters) with 85% and 94%
(target), 73% and 88% (passive), and 66% and 85% (active). Indi-
vidual results for each participant are depicted in Fig. 5a-c. Table 2
summarizes the classification results.

However, on average errors were detected the fastest with
the fully generic model, resulting in 368 ms for target,
361 ms for passive, and 345 ms for active. Error detec-
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Figure 3: Behavioral results of ten participants. All times are relative to the error onset at t = 0 s. (a) Average controller displacement (to the left or
right) at the error event. (b) Development of the reaction time. The mean reaction times of the participant averages of each run are indicated, the
dashed lines are linear regressions of the average reaction times. (c) Comparison of the average reaction times of block 1 and block 2. Error bars
show ± SD. (d)-(f) Boxplots of the individual reaction times of each participant. Average reaction times per error condition are indicated in each
subfigure (grand average mean ± SD).

Table 2: Comparison of the grand average classification results from
the generic and personalized error detection models for three binary
classification problems (each error condition vs. correct).

condition fully generic optimized generic personalized

% TPR TNR TPR TNR TPR TNR

target 70.2 87.0 76.4 90.9 85.1 94.1

passive 60.2 74.1 62.5 81.2 73.4 87.9

active 52.0 59.4 53.1 79.4 65.5 85.2

tion was slightly slower with the optimized generic model:
375 ms (target), 376 ms (passive), and 372 ms (active). With
the personalized model, we detected errors on average after
375 ms in the target condition, after 384 ms for passive, and af-
ter 385 ms in the active condition. The times were computed from
all correctly classified errors. The distributions of all correctly de-
tected errors are shown in Fig. 5d. To answer RQ2, we compared
the detection times with the participants’ reaction times. A summary
of the average detection times and the corresponding reaction times
can be found in Table 1. We compared the reaction times of all
conditions with the respective error detection times obtained with
the three models. After performing Wilcoxon rank-sum tests and
FDR correction (alpha = 0.05), we found the reaction times and their
corresponding detection times to be significantly different for all
models and in all conditions.

5 DISCUSSION

We developed a study to analyze the behavioral and electrophys-
iological responses to erroneous events in a VR navigation task.
Further, we wanted to asynchronously detect errors in a task with

continuous control and continuous feedback, and investigate how
different classification approaches, i.e., generic and personalized,
compare. Finally, we intended to compare the error detection times
and the natural reaction time of humans. Allowing for natural reac-
tion enabled us to study an unbiased behavior, which is the closest
proxy for a real-life scenario. To study these research questions,
we designed a task in which participants were instructed to navi-
gate a glider through targets in VR. To enhance the realism of the
setting, participants were sitting in a physical glider, which was
also the template for the virtual glider in the flight simulation. To
further increase the sense of presence, i.e., the sense of being in the
VR [65], participants could steer the virtual glider using the control
stick of the physical glider. This should enhance the participants’
engagement [13], as there is evidence that motivation influences
error perception [26].

5.1 Electrophysiology

We could identify EEG correlates of different error types that are in
alignment with existing literature [10], showing distinct negative and
positive peaks that can be interpreted as ERN and Pe, respectively.
Correct trials did not show any error-related responses. However,
grand average results show that errors perceived while participants
actively steered the glider elicited a delayed response compared to
passive error events. This is particularly visible in the time-domain
signals and the corresponding statistically different samples in the
segment between the ERN and the Pe. A similar effect has been
described by Lopes-Dias and colleagues [37], who found that a
masked (jittered) error onset delays the succeeding ErrP. Interest-
ingly, we found significant differences between target and the other
error classes before the error event. This difference is visible as a
negative deflection in the ErrP in target and is likely related to the
participants’ expectation to reach the target. However, investigations
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Figure 4: Grand average neurophysiological results calculated from 19 participants. All times relative to the error onset at t = 0 s. Top: Grand
average ErrPs at electrode positions FCz (left), Cz (middle), and Pz (right). Shaded areas indicate the SE of the participant averages. The dots
show significantly different time points, comparisons are indicated by the rectangles at the bottom left of each subfigure (e.g., red-blue means
target vs. passive). Bottom: Topographical distributions of the ErrPs of all 58 channels for the conditions target (top row), passive (middle row),
and active (bottom row). The corresponding time points are shown above the top row.

on this observation lie outside the scope of this work.

5.2 Error detection

We implemented generic and personalized approaches for error de-
tection. Previous studies have shown the performance advantage of
personalized over generic classifiers [30, 35]. Nevertheless, generic
models are considered more applicable because they do not require
any training with data from the end user before employing them in
HCI systems [35]. Another possibility to reduce the training time for
ErrP classifiers is to use models trained for the detection of different
brain patterns, which are expected to be similar to ErrPs. This has
been attempted at the cost of poorer performance [27, 30].

For error detection, we created three binary classification prob-
lems, i.e., each error condition vs. correct. On average, all classifiers
could detect errors with reasonable to high accuracy, with the ac-
tive fully generic detection as an exception. With the personalized
models, we achieved average TPRs between 65% and 85%, while
the average TNRs were above 85% for all classification problems.
Notably, we designed the classifier to optimize the hyperparame-
ters, i.e., the threshold τ and k consecutive windows, such that the
product T PR ·T NR is maximized. This optimization criterion can
be adapted to fit different scenarios, e.g., for applications in which
mistakenly detected errors are more problematic than missed errors.

We decided not to take into consideration other features than the
ones obtained from the time-domain signals, as proposed in related
works [27, 47–49], including frequency-domain features that are not
commonly considered in studies with ErrPs [9]. However, Spüler et
al. [69] and Lopes-Dias et al. [37] did not report classification im-
provements. Moreover, other classification methods potentially yield
better accuracies and could be tested in future research. Recently,
Sosulski and Tangermann [66] suggested using block-Toeplitz co-
variance matrices for LDA classification and outperformed sLDA
on multiple data sets.

5.3 Reaction time vs. detection time

We did not instruct the participants on how to react to errors. This
allowed us to analyze their natural reactions to errors. Ten of the 19
participants showed corrective behavior, i.e., tried to reach the targets
despite the error events. We found that the reaction time of these ten
participants was slower than the respective error detection times with
all classifiers. Error detections in real-time could be used, e.g., to
provide aid for the user or to allow systems to autonomously correct
erroneous actions without interrupting the user’s flow in performing
tasks [46]. Incorporating such systems would make the interaction
with the VR more smoothly and arguably improve the user experi-
ence. This could be of particular interest in navigation tasks, where
lack of depth and dimensionality perception in the presented visual-
ization inherently leads to more frequent erroneous actions by the
user [32]. However, this work should provide a methodological
foundation to address error detection in VR, without concentrating
on a particular application. On the contrary, the presented approach
is not limited to flight simulations but can be expanded to virtually
any interaction with potentially erroneous interactions. Concrete
examples that are applicable to numerous scenarios include errors
in the interaction with the VR, such as object selection. Given two
objects are close to each other, one object could be falsely selected.
Implementing our proposed approach, the system might be able to
automatically select the intended one, even faster than the user could
correct the mistake. However, the particular use of such gains in
time are highly dependent on the application and should be subject
to future research.

5.4 Limitations

Due to the limited number of trials available, we assessed the per-
formance of our classifiers on unseen test sets using a CV approach.
Alternatively, employing validation sets separate from the test sets
could reduce the risk of overfitting the models and might impact the
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Figure 5: Error detection results for the fully generic model (top row), the generic model with optimized hyperparameters (middle row), and the
personalized model (bottom row). (a)-(c) Classification results for the error conditions (a) target, (b) passive, and (c) active. Shown are TPR
(fraction of correctly classified error trials) and TNR (fraction of correctly classified correct trials). Average TPR and TNR for each classification
model and condition are given on top of the respective subfigures. (d) Distribution of the error detection times computed from all correctly classified
error trials. Grand average error detection times are given (mean ± SD). Times are relative to the error onset at t = 0 s.

accuracies. Similarly, a transfer to continuous real-time detection
would naturally increase the number of false positive detections
compared to the presented asynchronous classification of trials of
1.5 s. Finally, utilizing standardized measures for presence, like the
Multimodal Presence Scale [33], would allow for validation if affor-
dances to create realistic environments were successful. However,
the participants’ feedback after the experiments was predominantly
positive in this regard.

6 CONCLUSION

In this work, we explored different errors and the subsequent correc-
tive human behavior in a VR navigation task. We asynchronously
decoded errors with different classifiers, i.e., generic and person-
alized, that could detect erroneous events with reasonable to high
accuracy. Further, we could show that error detection that solely re-
lies on EEG signals can be faster than the natural reaction of humans.

The approaches and findings presented in this work could contribute
to developing systems that can detect errors and are applicable in
various VR scenarios that profit from an autonomous adaptation of
the presented visualization or error correction. Topics for future re-
search in this context should include real-time error detection in VR
and investigations on what means of corrective actions can improve
the user experience when using such systems.

ACKNOWLEDGMENTS

The Know-Center is funded within the Austrian COMET Program
- Competence Centers for Excellent Technologies - under the aus-
pices of the Austrian Federal Ministry of Transport, Innovation and
Technology, the Austrian Federal Ministry of Economy, Family
and Youth and by the State of Styria. COMET is managed by the
Austrian Research Promotion Agency FFG.

977



REFERENCES

[1] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate:

a practical and powerful approach to multiple testing. Journal of the

Royal statistical society: series B (Methodological), 57(1):289–300,

1995.

[2] Y. Benjamini and D. Yekutieli. The control of the false discovery

rate in multiple testing under dependency. The Annals of Statistics,

29:1165–1188, 2001.

[3] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. R. Müller. Single-

trial analysis and classification of ERP components - a tutorial. Neu-

roImage, 56:814–825, 2011. doi: 10.1016/j.neuroimage.2010.06.048

[4] J. Blumberg, J. Rickert, S. Waldert, A. Schulze-Bonhage, A. Aertsen,

and C. Mehring. Adaptive classification for brain computer interfaces.

In Proc. EMBC, pp. 2536–2539, 2007. doi: 10.1109/IEMBS.2007.4352845

[5] G. Bouyer, A. Chellali, and A. Lécuyer. Inducing self-motion sensa-

tions in driving simulators using force-feedback and haptic motion. In

Proc. VR, pp. 84–90. IEEE Comput. Soc. Press, Los Alamitos, CA,

USA, 2017. doi: 10.1109/VR.2017.7892234

[6] D. A. Bowman, D. Koller, and L. F. Hodges. A methodology for the

evaluation of travel techniques for immersive virtual environments.

Virtual Reality, 3:120–131, 1998.

[7] F. P. Brooks. What’s real about virtual reality? IEEE Computer

Graphics and Applications, 19:16–27, 11 1999. doi: 10.1109/38.799723

[8] C. Brunner, N. Birbaumer, B. Blankertz, C. Guger, A. Kübler, D. Mat-
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