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Abstract—In this paper, we study the potential capability of
quantum annealing in solving the phase unwrapping problem,
an instance of hard computational problems. To solve the phase
unwrapping problem using quantum annealing, we deploy the D-
Wave Advantage machine which is currently the largest available
quantum annealer. The structure of this machine, however, is
not compatible with our problem graph structure. Consequently,
the problem graph needs to be mapped into the target (Pegasus)
graph, and this minor embedding significantly affects the quality
of the results. Based on our experiment and also D-Wave’s
reports, the lower chain lengths can result in a better perfor-
mance of quantum annealing. In this paper, we propose a new
minor embedding algorithm that has the lowest possible chain
length for minor embedding the graph of the phase unwrapping
problem onto the Pegasus graph. The obtained results using this
embedding strongly outperform the results of Auto-embedding
provided by the D-Wave’s minorminer tool both in the quality
of the solution obtained and in the length of the chain.

I. INTRODUCTION

Two-dimensional phase unwrapping is the process of recov-

ering unambiguous phase values from a two-dimensional array

of phase values known only modulo 2π rad. This problem

arises when the phase is used as a proxy indicator of a

physical quantity, which is the time delay between two signals

in the case of interferometric SAR (InSAR) [1] and can be

used to extract accurate three-dimensional topography. Phase

unwrapping can be expressed as a minimum-cost flow problem

[2] and solved using the TRWS algorithm [3]. Alternatively,

we have formulated the phase unwrapping problem as a QUBO

problem and used quantum annealing to solve it [4].

The cost (Hamiltonian) of this formulation is as per equation

1 where ki are the labels that will determine the original phase,

A is the set of pixels in the SAR image, and Wst are weights

defining the neighbourhood structure and ast is based on the

wrapped phases [4].

E =
∑

(s,t)∈A

Wst (kt − ks − ast)
2
+

∑

s∈A

ωs (ks − as)
2

(1)

Mapping the problem on the annealing machine plays a

crucial role [4], [5].

In this work, we study a variety of embeddings for the phase

unwrapping problem on D-Wave’s Advantage architecture and

experimentally study the impact of the chain length on the

performance.

II. METHODOLOGY

The Pegasus graph is the underlying architecture of D-

Wave’s Advantage machine. The Pegasus graph includes the

Chimera graph as its sub-graph. Each Pegasus unit cell consists

of three Chimera unit cells. We process 2D images. Each pixel

depicts the phase including the unknown label. Labels are

assumed to be integers less than 4 and are represented as two-

bit variables enumerated using three coordinates; the first two

denoting the position in the 2D image and the third identifying

the bit variable.

Figure 1(a) shows the graph of our problem for a 4 × 4
image.

To map the problem graph onto the Pegasus graph, we start

with a sub-image of size 2 × 2 and then continue mapping

its adjacent sub-images. Consider an image with sub-images

like Figure 1(b). We start by mapping the red sub-image onto

eight qubits of two Chimera unit cells in Figure 2(a).

We continue by mapping the right sub-image of the mapped

one which is the yellow sub-image in Figure 1(b). We map this

sub-image similarly to the red one. However, the left pixels of

this sub-image are connected to the right pixels of the red one

(i.e., pixel (i, j+2) is connected to pixel (i, j+1), and pixel

(i+1, j+2) is connected to pixel (i+1, j+1)). Consequently,

we map the yellow sub-image in the lower left side of the red

one as in Figure 2(b). We can map every other two horizontally

adjacent sub-images with the same approach.

(a) Graph of the phase unwrap-
ping problem. Nodes depict label bit-
variables. The two most significant
digits represent position while the least
significant one represents the bit

(b) Pixels of a 4 × 4 images
with the sub-images of size
2× 2 shown in different col-
ors

Fig. 1. Pixel locations and connections of a 4*4 image
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(a) 2× 2 sub-image (b) Two horizontally adjacent
sub-images.

Fig. 2. Connections between bit variables are shown in red or yellow
(corresponding to the separate 2x2 sub-images). turquoise edges show the
connections between adjacent label variables of those sub-images.

We continue by mapping the bottom sub-images of those

that were mapped (the blue and the green sub-images in

Figure1(b)). These two sub-images are also horizontally ad-

jacent and we can map them the same way as the previous

adjacent sub-images. However, the top pixels of these two

sub-images have connections with the bottom pixels of the

previous sub-images (i.e., pixel (i+2, j) is connected to pixel

(i+1, j), pixel (i+2, j+1) is connected to pixel (i+1, j+1),
and so on). We map these two sub-images with a relative

location with the previous ones such that these connections are

provided. This is accomplished by mapping them in the lower

right side of the previously mapped sub-images as Figure 3.

A Chimera cell that was partially used in the mapping of

previous sub-images now is completely used as the mapping

of new sub-images matched the previous one. Four sub-images

are mapped so far and we can continue the same procedure

to map another four sub-images. The location of the next

four sub-images follows the approach that we used to map

adjacent sub-images. Continuing this trend, we can map the

whole image.

III. EXPERIMENTS

We present experimental performance results of different

minor embeddings, i.e., Native embedding (proposed in this

work), and five automatically generated minor embeddings

using D-Wave’s Ocean minorminer tool. Table I shows their

properties.

Fig. 3. Mapping four adjacent sub-image into the Pegaus graph. Connections
between the blue and the green sub-images are shown in magenta. Connections
between the yellow and the green and also between the red and the blue sub-
images are shown in olive

We used the default annealing parameters in our experi-

ments, i.e., annealing time= 20μs, number of reads = 1000.

Our datasets consist of 5 synthetic images with the size of

10 × 10 pixels with a medium noise level (SNR=10dB) and

medium complexity (Perlin correlation=18) [6].

To determine how close two images (of identical size) are

to each other, we use the matching fraction metric defined as

the fraction of pixels that are identical in the two images and

compare the obtained image to Noisy Unwrapped Ground-

truth images [4].

In terms of chain length, our proposed Native embedding,

having chain length of 1, is the optimum embedding with

the lowest possible chain length. D-Wave’s Ocean software

couldn’t find any other embedding with an average chain

length of close to one (Table 1). Our proposed Native em-

bedding results in accuracy exceeding 98% outperforming the

automatically generated ones. Of the automatically generated

embeddings, the one with the shorter average chain length

phasor the better accuracy.

IV. CONCLUSION

In this work, we proposed a heuristic mapping to embed

the phase unwrapping problem into the D-Wave’s Advantage

architecture. This embedding is optimal in terms of chain

length. We experimentally showed that our embedding out-

performs others confirming that a lower average-chain-length

embedding would result in better accuracy.
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TABLE I
EMBEDDING PROPERTIES

Embedding Chain Length Average
Type Avg STD Max Accuracy
This work 1 0 1 99
Auto 1 1.890 1.024 5 64.4
Auto 2 1.595 0.782 4 78.4
Auto 3 1.830 0.825 4 57
Auto 4 1.685 0.804 4 57
Auto 5 1.795 0.783 4 41.4
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