
Exploring Hybrid Classical-Quantum Compute
Systems through Simulation

Muhammad Nufail Farooqi
Leibniz Supercomputing Centre of the

Bavarian Academy of Sciences and Humanities

Garching near Munich, Germany

Email: farooqi@lrz.de

Martin Ruefenacht
Leibniz Supercomputing Centre of the

Bavarian Academy of Sciences and Humanities

Garching near Munich, Germany

Email: ruefenacht@lrz.de

Abstract—The computational requirements of applications
running in supercomputing centres are growing rapidly and
diversifying over time. To meet these needs, developers are con-
stantly developing new processors, domain-specific accelerators,
and technologies. Quantum computing is one notable technology
that has the potential to speed up certain computations and
could be used to enhance High Performance Computing (HPC).
However, integrating a quantum computer (QC) into HPC
systems is a complex and challenging task, both at the physical
and software level. Although various types of accelerators have
been integrated into HPC in the past, the integration of QC
into HPC presents a unique challenge as it operates on a new
computing paradigm and is a scarce resource that needs to be
shared among multiple jobs. Furthermore, HPCQC integration
is a multidisciplinary field and integration can mean different
things to different stakeholders.

Our approach to HPCQC integration is from the perspective of
an HPC centre where QC is integrated into the HPC environment
as an accelerator. We identify parameters that are important for
the integration, including network latency, HPCQC hybrid ap-
plication characteristics and fine-grained scheduling. In addition,
we develop a custom simulation model that can comprehensively
simulate a hybrid classical-quantum compute system at selected
level of detail. This simulation model is utilised to simulate the
performance of a hybrid application by adjusting its features
on a hybrid system with varying parameters. We discover that
fine-grained scheduling is critical to performance, and network
latency between QC and HPC has a significant impact on hybrid
system performance.

Index Terms—HPC, quantum computing, hybrid system,
workload simulation & modeling, scheduling

I. INTRODUCTION

Rapid advancements and discoveries in science and tech-

nology over the last four decades have been made possible

by high computational capabilities. This has not only led

to breakthroughs in traditional sciences, but has also revolu-

tionised fields such as artificial intelligence and data science.

This applicability is driving increased demand for computing,

leading not only to growth but also to diversification of use in

both academia and industry.

High performance computing technologies have continu-

ously evolved to meet the growing computing demands. The

compute power in HPC is harnessed through various architec-

tural advances; These architectures include, but are not limited

to, multicore, manycore, accelerators, and a hybrid of these.

There are also emerging technologies in development such as

neuromorphic computing and quantum computing that are also

paving their way to become a part of HPC.

Quantum computing is showing promise for exponential

speed-up for certain problems [1]–[5]. Its development has

made significant progress recently and is slowly making its

way out of physics laboratories and into production envi-

ronments. Quantum computing, although powerful, has lim-

itations and cannot be used as a stand-alone computer to

solve problems of applicable complexity and scale. Its high

computational power, combined with the fact that it requires

classical computing, makes it a good candidate to use as an

accelerator within the HPC ecosystem.

Quantum computers represent a revolutionary shift in com-

puting, with a new paradigm that poses unique challenges for

integration into high-performance computing environments.

These challenges are diverse and span both physical and

software integration. For example, quantum computers operate

in cryogenic environments, which requires specialised infras-

tructure and poses significant challenges for maintenance and

repair. In addition, frequent calibration is required to ensure

the accuracy and stability of quantum computing hardware.

Dynamic circuit compilation and optimisation is also required

to ensure efficient and effective use of quantum resources.

In addition, quantum computers are likely to be a limited

resource in the near future, meaning that they will need

to be shared among many computing jobs. This presents a

significant challenge for job scheduling and resource allocation

that can effectively utilise quantum computing resources while

minimising wait times and maximising efficiency.

Finally, the characteristics of hybrid HPCQC (High-

Performance Computing and Quantum Computing) applica-

tions remain largely unexplored and need to be carefully

analysed to fully understand their potential and limitations.

An example of classical-quantum hybrid algorithms are varia-

tional quantum algorithms, which need to continuously and

synchronously exchange information between the classical

and quantum information domains, introducing constraints and

overheads that need to be addressed.

HPCQC integration involves many stakeholders, and each

stakeholder has its own viewpoint on integration, placing

emphasis on different things. The majority of HPC centres

are expected to adopt quantum technology in the near future,

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

127

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

DOI 10.1109/QCE57702.2023.10196

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 Q

ua
nt

um
 C

om
pu

tin
g

an
d

En
gi

ne
er

in
g

(Q
CE

) |
 9

79
-8

-3
50

3-
43

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
CE

57
70

2.
20

23
.1

01
96

although a small fraction are presently conducting experiments

with it. [6]. Therefore, an integration study is necessary

to address the concerns of compute centres. As quantum

computers are not yet integrated into the HPC environment,

we have developed a custom simulation model to explore

the parameters important for HPCQC integration on potential

hybrid compute system architectures. In particular, we focus

on the software aspects that are important for integration

from a compute centre’s perspective. Highlights of the key

contributions for this work are:

• Identify and analyse the challenges ahead for the HPCQC

integration.

• Develop a custom simulator that can simulate both the

hardware (such as processing units, node layout and

network) and software (such as application types and

scheduling policies) components of the hybrid system,

with a plug-and-play framework to facilitate rapid devel-

opment and effrotless integration of new components.

• Simulate and analyse a number of design parameters im-

portant for the potential HPCQC hybrid compute systems.

• Simulate and analyse HPCQC application characteristics

and compare fine grain (task level) scheduling algorithms.

II. HPCQC INTEGRATION

HPCQC integration falls into two categories: hardware

integration and software integration. The former involves the

physical placement of the quantum processors and associated

equipment alongside the HPC resources, and the establishment

of a communication interface between the two systems. Soft-

ware integration, on the other hand, involves integrating the

software stacks and application paradigms of the two systems,

which are quite different due to the fact that classical and

quantum systems process information in different ways.

While the list of design parameters for HPCQC integration

is extensive, we discuss the following key parameters: One

is the impact of latency between the HPC and QC resources,

which can have a significant impact on the overall performance

of the hybrid compute system. In addition, QC is not a widely

available resource and may therefore be used as a shared

resource in the HPC environment, requiring careful consider-

ation of issues such as fine-grain scheduling to ensure fair and

efficient resource allocation. Finally, the unique characteristics

of hybrid applications that combine classical and quantum

computing paradigms must also be considered. To effectively

implement HPCQC integration, it is essential to carefully

evaluate each of these design parameters and develop strategies

that can effectively address the challenges they present.

A. QC as Shared Resource (Task Scheduling):

A quantum computer is an expensive resource and is ex-

pected to have limited availability in compute centres. There-

fore, it won’t be feasible to allocate it as a dedicated resource

to a job that won’t be able to fully utilise the resource, and

this will also lead to an excessive increase in waiting time of

other jobs requiring quantum resources. An intuitive solution

would be to use the quantum computer as a shared resource

that can be used by multiple jobs simultaneously. Fine-grain

(task-level) scheduling is required to coordinate access to

the quantum computer from multiple jobs. We analyse three

basic task-level scheduling algorithms and their impact on the

overall usage of the hybrid system.

The three scheduling heuristics we use to schedule quantum

tasks are First-In-First-Out (FIFO), Priority, and a mixed-mode

task scheduling approach. The FIFO method prioritises tasks

based on the order in which they are submitted. Tasks that

have been in the queue for the longest time are executed

first. The priority approach prioritises tasks based on their

level of importance. Tasks with the highest priority are given

priority over those with a lower priority. If two tasks have

the same level of priority, the one that was submitted first is

executed first. The priority assigned to a task is determined

by the classical resources assigned to the job. The mixed-

mode scheduling policy combines elements of both FIFO and

Priority scheduling. In this strategy, a set number of tasks are

executed using the FIFO method, followed by a set number of

tasks executed using priority scheduling. This helps to balance

the execution of tasks between those that have been waiting for

a long time and those that are more critical or time-sensitive.

B. HPCQC Hybrid Applications:

Jordan [7] has compiled a comprehensive list of quantum

algorithms. There are numerous classes of algorithms, but the

most interesting class of algorithms for HPC are the varia-

tional quantum algorithms, which iteratively perform some

classical computations followed by quantum computations.

The alternation between classical and quantum computations

is synchronous, as both have different compute paradigms that

cannot directly interact with each other.

The variational quantum algorithms are promising potential

candidates for high-performance computing (HPC) level hy-

brid applications [8]. While hybrid applications currently exist

as algorithms, the development of HPC-level applications has

yet to take place. Despite this, it is important to investigate

their key characteristics that will be crucial for performance.

One of the significant factors to consider is the ratio between

the classical and quantum compute time within an iteration. As

hybrid applications may require communication both before

and after the computation of a quantum segment, the number

of interactions between these segments will also play a critical

role in the performance of the application. These interactions

can scale differently depending on the specific application’s

requirements. For instance, a hybrid application that runs using

N processes, where all N processes, a subset of processes M,

or a single process out of N processes may carry out quantum

tasks, will necessitate varying degrees of communication.

C. Latency between HPC and QC:

Quantum computers are presently only available through

cloud services due to the high level of technical expertise and

maintenance required to keep the resource functioning. As a

result, integrating a quantum computer from the cloud into an

HPC system and running tightly integrated classical-quantum

128

Head Node

CPU
Network

Compute Node

CPU

GPU

Quantum Node

CPU

QPU

Job 3

Job 2

Job 1

Job

Job

Quantum Task 2

Quantum Task 1

schedule

re
m

o
te

ex
ec

u
ti

o
n

Fig. 1. Diagram of a classical-quantum system architecture model. Any
combination of resources and nodes is possible with varying properties such
as latency.

hybrid applications on it would considerably impact perfor-

mance. This is due to the communication latency between the

two resources, which adds significant overhead. To measure

the impact on performance, there is a need for a thorough

investigation of the effect of the latency on HPC resource

utilization for hybrid applications.

The information flow from the HPC to QC is a quantum

circuit, while qubit readouts are sent back. Therefore, the lim-

ited number of qubits currently available means that bandwidth

between HPC and QC resources is not an immediate issue

when running hybrid HPCQC applications.

III. SIMULATION MODEL AND IMPLEMENTATION

The hybrid system simulator model is divided into two

categories, namely hardware and software components. Hard-

ware components include physical components like proces-

sors, node, and network, while software components task,

taskgraph, process, job and scheduling. The hybrid system

simulator is designed as a plug-and-play model, which means

that new components can be added or existing components

can be easily modified or replaced. This feature makes the

simulator highly adaptable and flexible, allowing developers to

create and test new systems with relative ease. Fig. 1 illustrates

the core components for an example classical-quantum hybrid

system.

In addition to the hardware and software components, an

optional component of the hybrid system simulator is the

remote task execution service. This component is responsible

for executing tasks on a remote node if the processing unit

required for the task is not available on the current node. This

is particularly useful when resources on a compute cluster are

shared. In our case, the quantum computer serves as a shared

resource and quantum tasks are executed using this service.

The simulator also has the provision to implement and test

the impact of new scheduling policies. Scheduling policies

can be implemented not only for the jobs submitted to the

cluster but also for a task queue of a processing unit. By

simulating the impact of different policies, users can optimise

the performance and efficiency of their hybrid system.

Job

Process 1 Process 2

procs: 2 ppn: 1 res: CPU, QPU

Classical Task 1 Classical Task 2

Quantum Task 1 Quantum Task 2

Classical Task 3 Classical Task 4

Fig. 2. Example taskgraph showing multiple processes with dependencies on
both classical and quantum tasks.

A. Hardware Components

1) Processing Unit: A Processing Unit (PU) represent a

computational unit that is capable of carrying out a computa-

tional task. The compute model for the PU is implemented in-

side a method named compute of the corresponding PU class.

A PU also has an associated task queue where compatible tasks

are submitted by the owner node. A task handler processes

the task queue, prioritising the tasks in the queue according

to a predefined scheduling policy and sending each task to

the PU for computation. Once a task has been completed,

the task handler receives a signal indicating its completion,

allowing it to move on to the next task in the queue.

2) Node: The simulator consists of two types of nodes: a

head node and a compute node. The head node acts as a control

center, receiving job submissions from users and managing the

scheduling of jobs on the compute node. The compute node is

where the actual computation takes place, using the processing

units (PUs) available to it.

Jobs are submitted to a head node, which checks the job

requirements and maps them to the available PUs on the

compute nodes. The head node then schedules the job for

processing on the compute node using a scheduling policy.

The job scheduling policy we have implemented is the First-

Come-First-Serve (FCFS), which schedules jobs in the order in

which they are received by the head node. However, this policy

can be switched to any other policy depending on the specific

requirements of the simulated computing environment. Once

a job is scheduled, the compute node processes its associated

taskgraph, which represents the computation to be performed

by the job.

3) Network: All the nodes in a cluster are connected by

a network, which facilitates communication between them

to exchange of tasks and messages. Network overhead is

accounted for by using a fixed latency model that estimates the

time it takes for messages to travel between nodes. At present,

the network model is relatively simple, but it is able to transmit

jobs, tasks, and communication messages effectively.

However, we plan to implement a more detailed network

model in the future. This updated model will dynamically

129

simulate network congestion based on the number of messages

being transmitted at any given time, providing for a more

accurate representation of network behaviour.

B. Software Components

1) Task: A task can represent a variety of operations, i.e.

classical computation, quantum computation or data commu-

nication. Each task is associated with an owner node and

an owner process, indicating where the task was initiated.

If the necessary processing resources are not available on

the initiating node, the task can be executed on a remote

node. I also has an associated event that is used to signal

the completion of the task to its dependent tasks.

2) Taskgraph: A taskgraph is used to model the behaviour

of an application. It is represented as a directed acyclic graph,

where nodes represent individual tasks, and edges represent

dependencies between the tasks. The dependencies ensure that

each task is executed in the correct order and that all of

its prerequisites are met before it can begin. A number of

taskgraphs that are representative of some common application

types are pre-built with the simulator. An example taskgraph

is shown in Fig. 2.

3) Process: Similar to an operating system process, a pro-

cess emulates an instance of a taskgraph on an assigned node.

It processes the taskgraph and runs the tasks on processing

units when they are ready, or offloads them to other nodes

if a compatible PU is not available on the current node.

Furthermore, each process has its own identification number

which is used for communication between processes emulating

the same taskgraph.

4) Job: A job encapsulates an application (i.e. a taskgraph)

together with its execution requirements, i.e. the number of

processes to spawn, the type and number of processing units

required. It is analogous to a Slurm [9] job. Once a job has

been submitted, its execution requirements are passed on to

the job scheduler for reservation and scheduling on the hybrid

system.

IV. RESULTS

In Section II, we introduced key aspects of HPCQC inte-

gration, and in Section III we introduced the architecture of

the simulator. Here we present three use cases to simulate and

analyse a number of HPCQC hybrid system design parameters.

We also simulate three task-level scheduling algorithms and

compare their results. The selection of these use cases and

design parameters is based on the discussion of HPCQC

integration in [10]. The experimental setup is described below:

The cluster configuration that we simulate is similar to the

one shown in Figure 1. It consists of three nodes: a head

node, a compute node and quantum node, all connected by

an internal network. Jobs are not scheduled directly on the

quantum node but are submitted to the head node and are

later scheduled on compute or quantum nodes to simulate the

scenarios of an on-site quantum computer shared in a cluster,

or accessing a quantum computer in the cloud. The compute

node, which does not have a quantum processor sends all

TABLE I
PARAMETERS USED IN SIMULATION SETUP

Parameter Use Case 1 Use Case 2
Cluster network latency 5 ms

Cluster-QPU
network latency see x-axis 10 ms

Control electronics
reprogramming time see legend 500 ms

Readout time 0.001 ms
Classical compute time 1 ms 100 - 0.1 ms

Quantum circuit
execution time 0.05 ms 100 - 0.1 ms

of shots 1000
of iterations

(coupling frequency) 100 see x-axis
...

Parameter Use Case 3 Use Case 4
Cluster network latency 5 ms

Cluster-QPU
network latency see legend 0 ms

Control electronics
reprogramming time see legend 500 ms

Readout time 0.001 ms
Classical compute time 1.81 - 0.18 ms see legend

Quantum circuit
execution time 0.18 - 1.81 ms see legend

of shots 1000 100
of iterations

(coupling frequency) 100 variable

quantum tasks to the quantum node, which sends the results

back after computation. We measure throughput in terms of

quantum jobs completed per unit time, as this is one of the key

performance metrics for HPC clusters. The total simulation

time is 24 hours and we calculate throughput as the average

number of jobs completed per hour. The taskgraph that we

simulate is representative of the class of Variational Quantum

100 101 102 103 104 105 106 107

Network Latancy (μs)

0

100

200

300

400

500

600

T
h
ro

u
g

h
p

u
t

(j
o
b

s
/h

o
u
r)

Control electronics
reprogramming time

0.5 ms

2.75 ms

5 ms

27.5 ms

50 ms

275 ms

500 ms

Fig. 3. This plot shows the relationship between network latency, re-
programming time, and the resulting throughput. The control electronics
reprogramming time is shown in the legend. We see that both latency and
reprogramming time has a significant effect on the overall throughput of the
system in different regions of the parameter space.

130

Algorithms [11]. It consists of two tasks: a classical compute

task and a quantum task that depends on the classical compute

task. The taskgraph runs iteratively for a given number of

steps. The parameter values for the system configuration to be

simulated and the use cases are listed in Table I.

A. Use Case 1: Throughput vs Network Latency

An ideal scenario would be to equip each compute node

with Quantum Processing Unit (QPU). However, currently, this

is not feasible due to cost, space, maintenance, and design

constraints. Therefore, the effect of communication latency on

the performance of the system needs to be analysed.

Fig. 3 shows the throughput for network latency ranging

from 1 microsecond to 100 seconds. The latency here cor-

responds to the latency between the quantum node and a

quantum processor. A lower value of latency is analogous

to simulating a QPU attached to the node and a higher

value to a QPU residing remotely, e.g. in the cloud. Each

line corresponds to a different value for control electronics

reprogramming time that is the time required to reprogram

the control electronics for a QPU when a new circuit needs to

be executed.

As apparent from Figure 3, for lower values latency, the

throughput does not vary significantly but for higher values

i.e. the range for cloud access the throughput can be reduced

drastically. The control electronics reprogramming time also

plays an important role in increasing the throughput.

B. Use Case 2: Throughput vs Coupling Frequency

Besides system configuration, the system performance is

also dependent on the application characteristics. One key

aspect is the coupling frequency i.e. the number of times

communication happens between the classical and quantum

compute parts of the application per second. Two common

types are loosely coupled and tightly coupled applications.

An example of a loosely coupled application is a one-time

quantum circuit that does not need communication. Variational

10
1

10
2

10
3

Coupling Frequency (Hz)

0

5

10

15

20

25

30

35

T
h

ro
u

g
h

p
u

t
(j
o

b
s
/h

o
u

r)

Throughput

Overhead

0

1

2

3

4

5

O
v
e

rh
e

a
d

 (
μ
s
)

1e8

Fig. 4. This plot shows that as the coupling frequency increases the overall
throughput suffers and as the coupling frequency increases the overhead
also increases. Overhead is the combination of latency, control electronics
reprogramming time and qubit readout time.

quantum algorithms are examples of tightly coupled applica-

tions.

Fig. 4 shows throughput as we increase coupling frequency

i.e. the number of iterations from 1 to 1000. The throughput

decreases as we increase the coupling frequency, because of

the increased overhead. Overhead here is a combination of

the latency, control electronics reprogramming time and qubit

readout time. Thus while loosely coupled applications may

not be affected the performance of the system if run on a

cloud but running tightly coupled applications can degrade

the performance significantly.

C. Use Case 3: Throughput vs Classical to Quantum Compute
Time Ratio

The computation time spent in the classical part of an

application and the quantum part is not usually equal. In this

use case, we evaluate the throughput affected by the classical

to quantum compute time ratio for different values of network

latency and control electronics reprogramming times.

Fig. 5 shows throughput for ratios between classical and

quantum compute times ranging from 10:1 to 1:10. The

quantum compute time refers to the time it takes to execute the

circuit once. Throughput does not change significantly even

in the case of higher overhead for applications with a higher

quantum compute time as the overhead cost is small compared

to the quantum compute time. However, throughput becomes

sensitive to the overhead (latency and reprogramming time)

for applications with lower quantum compute time.

D. Use Case 4: Task-Level Scheduling Polices

In this use case, we simulate a cluster of 1024 classical

nodes with 48 cores each. QPUs are directly attached to

quantum nodes and are shared among all jobs.

The workload is generated using the logs of HPC only

workload from a compute centre. We simulate variational

algorithm with different classical and quantum compute time

ratios. Total computation time of a job is taken from the log

10
:1 9:

1
8:

1
7:

1
6:

1
5:

1
4:

1
3:

1
2:

1
1:

1
1:

2
1:

3
1:

4
1:

5
1:

6
1:

7
1:

8
1:

9
1:

10

Compute Time Ratio (Classical:Quantum)

0

25

50

75

100

125

150

175

T
h
ro

u
g

h
p

u
t

(J
o
b

s
/H

o
u
r)

Latency, reprogramming time

10 us, 5 ms

10 us, 50 ms

10 us, 500 ms

1000 us, 5 ms

1000 us, 50 ms

1000 us, 500 ms

100000 us, 5 ms

100000 us, 50 ms

100000 us, 500 ms

Fig. 5. This plot shows the throughput as a function of the computational
ratio as classical:quantum. Latency and reprogramming times are shown in
the legend. As seen, with a higher quantum to classical work ratio the through
plateaus whereas if the quantum component is not oversubscribed then latency
and reprogramming time are dominant.

131

0

2500

5000

7500

#
 o

f
J
o
b
s
 C

o
m

p
le

te
d

FIFO-1

FIFO-2

FIFO-4

Prio
rity

-1

Prio
rity

-2

Prio
rity

-4

Mixed-1

Mixed-2

Mixed-4

Scheduling Policy - # of Quantum Servers

0.0

0.2

0.4

0.6

R
e
s
o
u
rc
e
 U

s
a
g
e
 (

H
P

C
)

Compute Time (Classical:Quantum)

99:01

95:05

Fig. 6. This plot shows cluster’s throughput (top) in terms of the total
number of jobs completed and the average of classical resources usage effi-
ciency(bottom) for the scheduling policies with different number of quantum
servers and different workloads (classical-quantum compute time ratios). Both
FIFO and Mixed completes high number of jobs while the Priority scheduling
policy has the highest resource usage as the policy prioritises the quantum
tasks that belongs to a job with most allocated HPC resources.

and distributed among classical (95-99%) and quantum (05-

01%) compute times. We simulate one month of execution

where job arrival times are taken from the log and are

scheduled using the Slurm’s backfill scheduler.

We compare three scheduling policies described in Sec-

tion II; FIFO, Priority and Mixed on cluster configurations

with 1,2 and 4 quantum servers. We also simulate two classi-

cal:quantum computation time ratios (99:01 and 95:05) of the

HPCQC hybrid applications in the workload. We look into

two performance matrices i.e.throughput and HPC resources

usage to compare the performance of the task-level scheduling

policies. Throughput is represented in terms of the total

number of jobs that are completed during the entire simulation

period. Thus, we keep track of the idle and busy times for

the HPC resources and compute the average resource usage

efficiency for all the completed jobs.

Figure 6 shows the throughput and resource usage. FIFO

and Mixed scheduling perform better than priority-based

scheduling by completing more jobs. The Priority scheduling

completes fewer jobs as it priorities the quantum resource for

bigger size jobs and allow them to finish first while small jobs

keep waiting for the quantum resource. The Priority scheduling

significantly increases the HPC resource usage as it reduces the

waiting time for big jobs by allowing them to use the quantum

resource out-of-order. However, the downside with the Priority

scheduling is that small jobs suffers from starvation for the

quantum resource thus results in low number of completed

jobs. The Mixed scheduling reduces the effects of starvation

by alternating between FIFO and Priority polices resulting

in completing more jobs and completing higher total core-

hours jobs. There is no clear winning scheduling policy that

perform better on all performance metrics. The selection of a

scheduling policy would therefore be based on a centre’s goals

and priorities that they want to achieve.

V. RELATED WORK

The integration of quantum computing (QC) into high-

performance computing is a relatively new area of research,

and progress in this field is still in its early stages. While

there have been several discussions and proposals have been

put forward regarding the integration of quantum computing

into HPC systems, concrete steps have yet to be taken. Some

of the integration discussions are as follows.

In their paper, Martin et al. [10] examine various hybrid

application workflows and analyse existing hybrid architec-

tures, such as quantum computing in the cloud and its future

integration on-premises or on-node. The authors also propose

the concept of onloading to increase resource utilisation, where

HPC resources can be utilised for tasks related to QC.

Humble’s paper [12] highlights technical challenges for

HPCQC integration but despite these challenges, Humble sees

significant potential for progress. The paper concludes that

further research and development is needed to fully realise

the full potential of HPCQC.

Bartsch et al. [8] identify variational quantum algorithms as

a suitable fit for hybrid HPCQC applications in the NISQ era,

and predict that QC will serve as an accelerator for HPC in the

future. The authors emphasise the importance of developing an

efficient and standardised quantum software stack to facilitate

the integration of HPC and QC.

Simulators have been used to simulate specific operations of

a compute clusters. For example, [13] and [14] simulates job

scheduling, task mapping and application simulation on target

platforms. They focus on the interconnect models and simulate

the message passing communication behaviour of application.

Similarly, [15] and [16] do scheduling simulation using Slurm

simulator. They model system workload and generate synthetic

workload but no hardware and application simulation.

VI. CONCLUSION

In summary, we have discussed several key aspects of

the integrating quantum computers into the supercomputing

environment. In addition, we introduced a classical-quantum

compute system simulation model, which can simulate these

systems and generate performance metrics relevant to su-

percomputing centres. We simulated and analysed a simple

mid-size classical-quantum compute system with various in-

tegration and system design parameters such as latency, con-

trol electronics reprogramming time, coupling frequency, and

classical-to-quantum compute time ratio. We also simulated a

real workload for HPCQC hybrid applications and analysed

the performance of three task-level scheduling policies.

HPCQC hybrid applications comprise two compute

paradigms with a sequential workflow that require rigorous

synchronization during execution. To achieve high perfor-

mance for these tightly coupled applications, an on-premises

quantum computer would be necessary as latency plays a

critical role. Moreover, state-of-the-art task-level scheduling

algorithms would be required to share quantum computers

among jobs and optimise system-wide resource utilisation.

132

ACKNOWLEDGMENT

Funded by the German Federal Ministry for Education and

Research under grants 13N15689 (DAQC), 13N16063 (Q-

Exa), 13N16188 (MUNIQC-SC), and 13N16078 (MUNIQC-

ATOMS), the German Federal Ministry for Economic Affairs

and Climate Action under grant 01MQ22004C (QuaST), and

the Bavarian State Ministry of Science and the Arts as part of

Munich Quantum Valley (MQV).

REFERENCES

[1] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6:1–6:20, 2018.

[2] D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen,
R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain, “Quantum
computing for finance: State-of-the-art and future prospects,” IEEE
Transactions on Quantum Engineering, vol. 1, pp. 1–24, 2020.

[3] H. Liu, G. H. Low, D. S. Steiger, T. Häner, M. Reiher, and
M. Troyer, “Prospects of quantum computing for molecular sciences,”
Materials Theory, vol. 6, no. 1, p. 11, 2022. [Online]. Available:
https://doi.org/10.1186/s41313-021-00039-z

[4] P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal, M. J.
McConnell, G. Sapiro, A. Aspuru-Guzik, J. T. Baker, M. Bastiani, J. D.
Murray, S. N. Sotiropoulos, J. Taylor, G. Senthil, T. Lehner, M. B.
Gerstein, and A. W. Harrow, “Quantum computing at the frontiers of
biological sciences,” Nature Methods, vol. 18, no. 7, pp. 701–709,
2021. [Online]. Available: https://doi.org/10.1038/s41592-020-01004-3

[5] A. Ajagekar and F. You, “New frontiers of quantum computing in
chemical engineering,” Korean Journal of Chemical Engineering,
vol. 39, no. 4, pp. 811–820, 2022. [Online]. Available:
https://doi.org/10.1007/s11814-021-1027-6

[6] IQM and ATOS, “Untangling the hpc innovation dilemma through quan-
tum computing,” International Data Corporation (IDC), Nov. 2021. [On-
line]. Available: https://www.meetiqm.com/uploads/documents/IQM-
Atos-State-of-quantum-HPC-research-2021.pdf

[7] S. Jordan, “Quantum algorithm zoo.” [Online]. Available:
https://quantumalgorithmzoo.org/

[8] V. Bartsch, G. Colin de Verdière, J.-P. Nominé, D. Ottaviani,
D. Dragoni, C. Bouazza, F. Magugliani, D. Bowden, C. Allouche,
M. Johansson, O. Terzo, A. Scarabosio, G. Vitali, F. Shagieva, and
K. Michielsen, “¡ qc — hpc ¿: Quantum for hpc,” Oct. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5555960

[9] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[10] M. Ruefenacht, B. G. Taketani, P. Lähteenmäki, V. Bergholm,
D. Kranzlmüller, L. Schulz, and M. Schulz, “Bring-
ing quantum acceleration to supercomputers,” 2022. [On-
line]. Available: https://meetiqm.com/uploads/documents/IQM HPC-
QC-Integration-Whitepaper.pdf

[11] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles,
“Variational quantum algorithms,” Nature Reviews Physics, vol. 3, pp.
625–644, sep 2021.

[12] T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch,
and T. Monz, “Quantum computers for high-performance computing,”
IEEE Micro, vol. 41, no. 5, pp. 15–23, 2021.

[13] M. A. Obaida and J. Liu, “Simulation of hpc job scheduling and large-
scale parallel workloads,” in 2017 Winter Simulation Conference (WSC),
2017, pp. 920–931.

[14] K. Ahmed, M. Obaida, J. Liu, S. Eidenbenz, N. Santhi, and G. Chapuis,
“An integrated interconnection network model for large-scale perfor-
mance prediction,” in Proceedings of the 2016 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
177–187.

[15] C. Galleguillos Miccono, Z. Kiziltan, A. Netti, and R. Soto, “Accasim:
a customizable workload management simulator for job dispatching
research in hpc systems,” Cluster Computing, vol. 23, 03 2020.

[16] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakrishnan, “Scsf:
A scheduling simulation framework,” in Job Scheduling Strategies
for Parallel Processing - 21st International Workshop, JSSPP 2017,
Orlando, FL, USA, June 2, 2017, Revised Selected Papers, ser. Lecture
Notes in Computer Science, D. Klusácek, W. Cirne, and N. Desai, Eds.,
vol. 10773. Springer, 2017, pp. 152–173.

133

