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Abstract—Solving Ordinary Differential Equations (ODE) is
important for a broad range of domains, such as engineering,
weather forecast, and finance. Most quantum algorithms pro-
posed to solve them revolve around transforming ODEs into
a system of linear equations, in order to benefit from the
exponential advantage promised by the HHL algorithm. However,
there are known limitations to this subroutine such as the linear
scaling with condition number. In particular, for HHL-based
ODE solvers, this dependency yields a complexity that generally
grows exponentially with the integration time. In this paper, we
present a scheme that does not rely on the HHL subroutine.
We use the Koopman Von Neumann (KvN) formalism that
maps arbitrary nonlinear dynamics to a Hilbert space where the
dynamics are unitary. This effectively reduces the ODE problem
to a Hamiltonian time evolution, which is a well-known problem
in quantum computing. However, this comes at a cost as the KvN
formalism is expressed in an infinite-dimensional Hilbert space,
and involves nonphysical states with infinite energies. Previous
works have tackled this by truncating the Hilbert space, and by
approximating all the relevant states and operations on qubit-
based systems. Instead of mapping to qubit-based computations,
in this paper, we investigate the direct use of continuous-variable
quantum computers for this problem. We provide an algorithm
to compile a sequence of Gaussian and non-Gaussian continuous
variables gates to solve an arbitrary one-dimensional polynomial
ODE. We analyze the algorithm and propose that it is intrinsically
better suited for solving so-called initial distribution problems,
rather than initial condition problems. We propose the first steps
towards a comprehensive complexity and specify which steps
need to be developed for a complete analysis.

Index Terms—Differential Equations, Continuous Variables
Quantum Computing.

I. INTRODUCTION

Differential equations are fundamental to understanding the

dynamic behavior of various natural phenomena and techno-

logical processes, making them indispensable in a wide range

of scientific, engineering, and mathematical disciplines. In the

community, the typical problem one studies is the Initial Value

Problem (IVP).

Problem 1. Given an initial condition u0 ∈ R
N , an analytic

function F : RN → R
N , and an integration time t ∈ R≥0

find the solution u : R≥0 → R
N to the differential equation

du
dt = F(u).

Many papers have tackled this problem, with linearization

and with space and time discretization techniques, finding

an approximation to the IVP of differential equations can

be turned into solving a high-dimensional linear system of

equations of the form Ax = b. This is the ideal setting for the

application of the HHL algorithm [1] which in some situations

promises to solve with an exponential advantage in the size

of the system, returning the solution as an amplitude-encoded

state |u〉 = 1
‖u‖

∑N
j=1 uj |j〉. Several papers have proposed

approaches that scale polylogarithmically in the size of the

problem N for linear ODEs [16] and non-linear ODEs [4].

However, it is known that the HHL algorithm is subject to

certain limitations [1], [2]: the state preparation of |b〉, the

readout of the results from the amplitude-encoded state |u〉,
the sparsity of A, and the condition number of A. In particular,

related to that last caveat, a lower bound of the complexity

has been proven in [3] that applies to any quantum algorithm

returning the solution of an ODE as an amplitude-encoded

state, which is the case for the vast majority of exact quantum

ODE solvers. Their complexity is bounded by Ω(eδt) where t
is the integration time of the IVP and δ is a parameter derived

from the spectrum of the matrix M characterizing the linear

ODE ẋ = Mx.

In this work we propose a different approach to solve ODEs,

and explore to which extent the above limitations could be

circumvented. We study the translation of arbitrary dynamics

into a Schrodinger-like equation [5]. Mapping the native space

of the ODE to a space where the time evolution is unitary

effectively reduces an arbitrary ODE problem to a Hamiltonian

time evolution. While previous works approximate the infinite-

dimensional Hilbert space with a finite-dimensional Hilbert

space, in this paper, we will explore an alternative way of

dealing with the infinite dimensionality of the Hilbert space,

working directly in a continuous variable framework.

The rest of the paper is structured as follows: in section

II we cover background information such as the Koopman

Von Neuman (KvN) framework and how previous works have

used this formalism in quantum algorithms for ODEs. We

also introduce continuous variable computing. In section III,

we will present our main contribution, a continuous variable

algorithm making use of the KvN framework, and explain

how it is better suited to solve the initial distribution problem

rather than the initial value problem. In section IV we discuss

the limitations of the proposed algorithm and the next steps.
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Finally, we present our conclusions in section V.

II. BACKGROUND

A. Koopman–von Neumann classical mechanics

The Koopman–von Neumann classical mechanics describe

the evolution of arbitrary classical dynamical systems as

the Hamiltonian evolution of wave functions in an infinite-

dimensional Hilbert space, where each mode corresponds to

one of the N coordinates of the ODE. While the full theory

behind this framework is more comprehensive, we present

the basic elements of the Koopman von Neuman (KvN)

framework [6]. The central element of this framework is

the Hamiltonian describing the time evolution. For an ODE

defined as du
dt = F(u), we define the KvN Hamiltonian as

HF :=
1

2
(p̂F(q̂) + F(q̂)p̂) (1)

where q̂ = [q̂1, q̂2, ..., q̂N ] is the vector of the position operators

for each of the N modes, and p̂ is the vector of their respective

momentum operators. We also use the notation |x〉q̂ for a

position operator eigenstate with eigenvalue x. Looking at the

position operator in the Heisenberg picture, we can write that

the operator follows the same equation as the ODE ẋ = F(x)
(full derivation in [17]):

dq̂

dt
=

[q̂, H]

ih
= F(q̂). (2)

Therefore, the expectation value of the position operator

follows the trajectory of the ODE. Applying a position eigen-

state |u0〉q̂ to equation 2, we can show that KvN evolution

of the position eigenstate with an eigenvalue equal to the

initial condition will result in a position eigenstate with the

corresponding eigenvalue following exactly the solution of the

ODE

|u(t)〉q̂ = eiHFt|u0〉q̂, (3)

where u(t) is the solution to the IVP (problem 1). As explained

in [18] the state of a system in an infinite-dimensional Hilbert

space is described by a wave function that can be expressed

in the q̂ representation |ψ〉 =
∫
ψ(u)|u〉q̂du. Thanks to the

linearity of the time evolution, evolving a wave function de-

scribed by ψ : u → √
p0(u) using the KvN Hamiltonian will

correspond to evolving the initial distribution p0 : R
n → [0, 1],

solving a slightly different problem to the IVP. We introduce

the initial distribution problem (IDP) which is, as we will see,

a better fit for the types of computations we can expect CV

quantum computers to perform. It is also a natural extension

of the IVP when there is uncertainty in the initial state.

Problem 2. Given an initial probability distribution
p0 : R

N → [0, 1], an analytic function F : RN → R
N , and

an integration time t ∈ R≥0 find the probability distribution
pt : R

N → [0, 1] evolved for a time t according to the
differential equation du

dt = F(u).

B. Previous work: Finite Hilbert space approximations

The use of the KvN framework in the context of solving the

IVP has rapidly been identified as an opportunity for quantum

computing [6]–[8]. To the best of our knowledge, all previous

approaches reduce the infinite-dimensional Hilbert space to

a finite dimension to perform an approximate simulation on

a qubit-based quantum computer. This is done either with

a truncation of the infinite-dimensional Hilbert space or via

discretization of the phase space. However, the reduction to a

finite Hilbert space is far from trivial [9], as finding rigorous

bounds for the truncation error is still a work in progress. We

explore an alternative way by working with infinite dimen-

sional systems, which then avoids truncation problems, but

does so at a cost. This introduces another class of issues, such

as the appearance of the norm of unbounded operators in the

Trotter error. Specifically, we propose an algorithm directly

compiled as a sequence of continuous variables gates, meant to

be executed on a bosonic quantum computer (e.g. photonics).

C. Continuous Variables

To formulate the algorithm in the Continuous Variable

Quantum Information [10] picture we introduce its most cen-

tral ideas in the following section. In contrast to qubit-based

computation where observables can only take a finite discrete

set of values upon measurement, CV observables can take a

value from an infinite amount of values over a continuous

interval. Quantum states are conveniently expressed in terms

of creation â+ and annihilation â operators defined such that

â|n〉 = √
n|n−1〉, where |n〉 are the Fock states in a countably

infinite-dimensional Hilbert space. The quadrature operators

are defined as follows: the position operator is defined as

q̂ = â+â+√
2

and its conjugate operator is the momentum

operator defined as p̂ = i â−â+√
2

. The quadrature operators are

self-adjoint and have a continuous spectrum with eigenvalues x
spanning R, and the corresponding eigenvectors |x〉q̂ forming

a full basis of the Hilbert space: I =
∫ +∞
−∞ |x〉q̂〈x|q̂dx.

The conditions for any arbitrary operator to be approximated

in this infinite-dimensional Hilbert space, i.e. universality

conditions have been known for several decades [12]. The first

set of states of interest is the Gaussian gates, under which

the set of Gaussian states is invariant. A Gaussian state is

a quantum state that is fully characterized by a mean value

and a covariance matrix and follows a Gaussian probability

distribution over the quadrature operators. This set of states

and gates can be efficiently classically simulated [13] and is

in some regard analogous to Clifford circuits. The generator of

any Gaussian gate can be expressed as a quadratic polynomial

in the quadrature operators (e.g. p̂2 + q̂). In order to reach

full universality, a non-Gaussian gate with a higher degree

in quadrature operator has to be added to the model of

computation [10], the most common non-Gaussian gates being

either the cubic gate eitq̂
3

and the Kerr gate eit(q̂
2+p̂2)

2

. These

non-Gaussian gates are very difficult to implement in practice,

and can therefore be considered “expensive”. For the purpose

of this paper, we choose our model of computation as being
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(a)

(b)

(c)

Fig. 1. (a) Group commutation relationship used to approximate a gate, (b)
two-step nested structure to expand any monomial gate as per algorithm 2.
This leads to a recursive decomposition that is stopped when q̂k+1 = q̂3 in
which case the native gate is used. (c) this sequence repeated M times is an
example of a simple Trotter scheme for a quadratic 1D ODE

the following set of gates, defined by their corresponding

generators: the Displacement Gate: H = p̂, the Squeezing

Gate: H = p̂q̂ + q̂p̂, the Quadratic Gate: H = p̂2, the Cubic

Gate: H = q̂3, the Beam-splitter: H = q̂1p̂2 − q̂2p̂1.

III. PROPOSED ALGORITHM

A. Approximation of the time evolution of the KvN Hamilto-
nian

Using the generators corresponding to the set of gates

defined in II-C, in this section we propose an algorithm to

derive a sequence of gates approximating the time evolution of

the Koopman von Neuman Hamiltonian for a one-dimensional

polynomial ODE. Any polynomial function describing the

ODE can be written as F(u) =
∑d

k=0 aku
k, and the corre-

sponding KvN Hamiltonian is H =
∑d

k ak
1
2{p̂, q̂k}, where

{A,B} = (AB +BA) is the anti-commutator. Because of

the way this Hamiltonian naturally decomposes as a sum of

Hamiltonian that are close to the native set of gates, we choose

a Trotterisation [11] approach to evolve this Hamiltonian. We

break down the algorithm into two parts, each of which is

detailed in the Appendix in section VI-A. Firstly, we introduce

the monomial subroutine (algorithm 2) to approximate any

gate with a generator of the form {p̂, q̂k}∀k ∈ N. We use

the group commutation relationship depicted in figure 1-(a)

in a nested recursive expansion as illustrated in figure 1-

(b). Secondly, we use the monomial subroutine to be able to

approximate any polynomial as detailed in subroutine 3, and

in particular the polynomial of the Hamiltonian of interest H .

Computing the error for such an approximation is a chal-

lenge, as it would require a complete Trotter error theory [11]

for continuous variables which, to the best of our knowledge,

has not yet been resolved. Naive extensions from finite systems

run into trouble as the operators become unbounded. Indeed,

the general Trotter error is expressed as O(‖[A,B]‖t2), and

as in infinite-dimensional Hilbert spaces operator norms are

not bounded, this would, in theory, yield an infinite error. We

present in the Appendix a potential direction to deal with this.

As an example, we present a simple scheme for an arbitrary

1D quadratic ODE in figure 1-(c). This sequence of gates

is derived by applying algorithm 3 to a generic quadratic

polynomial F(u) = a0 + a1u + a2u
2. The associated er-

ror comes in two different scalings. On the one hand, the

first two blocks correspond to the linear part of the ODE

(a0 + a1u), their time parameter evolving linearly with time.

Therefore general knowledge of Trotter theory yields an error

O((t/M)2). On the other hand, the four last blocks correspond

to the quadratic part of the ODE (a2u
2), and applying the

Baker–Campbell–Hausdorff formula to figure 1-(a) the error

scales as O((t/M)3/2+1). Comparing these two error scalings

we realize that one is smaller than the other when ideally they

should be of the same order. This illustrates that the above

scheme could benefit from a better sequence of numbers of

trotter steps M (having fewer linear blocks than quadratic

blocks for example). Finally, for the overall repetition M
times, the error ε will be O((t/M)5/2) and the number of cu-

bic gates required for the quadratic scheme is 2M = O(ε2/5t)
with a potentially large prefactor due to the commutator norms,

to be determined in future work.

B. Chaos and position eigenstates

The theoretical framework presented in section II-A uses

position eigenstates. However, these states are not physical

states, as the amplitude of the wave function expressed in

the Fock space is not square integrable. They can be in-

terpreted as infinitely squeezed states, therefore we decided

to approximate position eigenstates with finitely squeezed

states. This approximation is equivalent to approximating the

Dirac delta with a Gaussian where the standard deviation

is controllable. A state squeezed by an amount r, (meaning

that the squeezing generator is time evolved for a time r
starting from a coherent state), yields a standard deviation of

σ0 = e−r. Then displacing this state to the position x0 can be

written as

|x0, σ0〉 = 1

σ0
√
π

∫ +∞

−∞
exp

(
− (x− x0)

2

σ2
0

)
|x〉q̂dx. (4)

Using the position eigenstates basis for decomposition, we

realize that this is a continuous weighted sum over position

eigenstates and because the time evolution is linear, the time

evolution of the sum of position eigenstates is equal to the sum

of the time evolution of position eigenstates. This means that

effectively the resulting state will correspond to the evolution

of a Gaussian distribution as the initial distribution under the

differential equation.

Therefore in order to solve the IVP, we need to find a bound

for the variance of the solution. Using knowledge of an upper

bound of the Lyapunov exponent λ, with a required accuracy

ε and an integration time t, we can use it to choose the initial

squeezing factor of the state. Indeed per the definition of the

Lyapunov exponent, the standard deviation of the final state
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would be upper bounded: σf < σ0e
λt therefore in order to

have the requested accuracy ε we need to have ε < e−reλt,
and we can conclude we need the squeezing factor to be

r > λt+ log(ε). (5)

It is important to note that this is not an unbiased estimator.

For non-linear ODEs it is not guaranteed that the mean of the

evolution of a Gaussian distribution will evolve accordingly

to the solution of the ODE with a Dirac delta as an initial

condition. Our suggestion to remedy that is to sufficiently

squeeze the state initially.

However, we propose to use the algorithm to solve the IDP

instead of the IVP, focusing on the evolution of the distribution

itself rather than a single initial condition. Executing the algo-

rithm on a continuous variables quantum computer becomes a

machine to sample from that evolved distribution. This could

for example help identify attractors or other properties of the

dynamical system. Such properties include for example the

Lyapunov exponent, which could be derived as the variance

of the position operator q̂.

C. Overall algorithm

We present a description of the algorithm for a 1D poly-

nomial ODE in the algorithmic box 1, and explain it here.

Starting with the preparation of the state, the vacuum state is

first squeezed according to the required precision. Each mode

is then displaced by an amount corresponding to the initial

value. Secondly, we implement the approximated version of

the time evolution of the KvN Hamiltonian, by executing the

sequence of gates returned by III-A. Finally, we perform a

homodyne measurement of the position and return the sampled

value.

IV. DISCUSSION AND NEXT STEPS

So far we have looked into a single-mode algorithm, but

adding beam-splitters guarantees the full universality of CV

for several modes. The explicit procedure to extend the algo-

rithm proposed in III from one-dimensional ODEs to multi-

dimensional ODEs is out of the scope of this paper but will

be considered in future work. It is however worth noting that

beam-splitters can be considered a cheap gate in photonics.

As discussed in section III-A and in the Appendix, more

work is required to fully characterize the Trotter error in

infinite-dimensional Hilbert spaces. Such analysis will enable

choosing the appropriate number of Trotter steps M at each

commutator breakdown (figure 1-(a)). We highlight the dif-

ference with the truncated approaches that limit support of

the state which shall be a finite number of Fock states, while

the Trotter approach limits the expected energy of the state

but enables infinite-dimensional support. For this reason, we

expect the final error scaling to be different between our

approach and the previously introduced methods relying on

Hilbert space truncation.

In addition, the difficult choice of the number of Trotter

steps at each commutator breakdown hints towards a potential

avenue performing a variational version of this algorithm, with

sequences of displacement, squeezing, quadratic and cubic

gates with tuneable execution time parameters. These param-

eters would be optimized to maximize the match between the

output of the algorithm and given time-series data.

Finally, with fully characterized tighter Trotter error bounds,

the main goal is to try and compare the complexity of such

an algorithm to that of qubit-based algorithms. For example

the Stellar rank [15] corresponds to the number of zeros of

the Husimi function (a phase space representation of a state)

that characterizes the ”non-Gaussianity” of a state. The stellar

rank is equivalent to the minimal number of photon additions

necessary to engineer the state. This enables the introduction

of an infinite hierarchy of states, that can be used in the context

of the study of complexity of continuous variables quantum

computing.

V. CONCLUSION

We propose a new perspective on the Koopman Von

Neumann formalism, that allows mapping arbitrary classical

dynamics to an infinite-dimensional Hilbert space where the

dynamics are unitary. This effectively transforms an ODE

problem into a Hamiltonian evolution problem. While previous

works consider these dynamics in an approximated finite

Hilbert space, we chose to keep working in an infinite-

dimensional Hilbert space and propose a Continuous Variable

Algorithm to solve one-dimensional polynomial ODEs. We

propose that for such a CV system, the natural problem to be

tackled is not the basic IVP, but rather its natural probabilistic

extension the IDP. The current work does not allow for a full

complexity analysis due to the problems with the estimation of

the Trotter error, however, we do provide the algorithm with

a sub-optimal sequence solving an arbitrary quadratic ODE,

including the scaling of the number of gates.
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Outputs : ũ(t) an approximation of the ODE solution u(t) such that ‖ũ(t)− u(t)‖ < ε
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VI. APPENDIX

A. Algorithm subroutines

For the first subroutine, we will use the following commu-

tation formulas extensively:

[
p̂2, q̂k+1

]
= (k + 1)i{p̂, q̂k} (6)

[{p̂, q̂k − 1}, q̂3] = 6iqk+1 (7)

The first subroutine’s goal is to approximate a monomial

of quadrature commutators of arbitrary degree k : {p̂, q̂k}.

The degree k = 0 simply corresponds to the generator of

the position displacement gate H = {p̂, q̂0} = 2p̂. The

degree k = 1 corresponds to the generator of the squeezing

gate H = {p̂, q̂1} = 2(p̂q̂ + q̂p̂). For higher degrees,

generators of the form {p̂, q̂k} are not part of our native

set of gates as described in II-C. From equation 6 we can

obtain it as the commutator between p̂2 and q̂k+1 using the

following approximation derived from second-order Trotter

e−ihAe−ihBe+ihAe+ihB = e−h2[A,B]+O(h3). However, for

k ≤ 3 q̂k+1 is out of our set of gates. Looking at equation

7 we realise that q̂k+1 is proportional to the commutator

between {p̂, q̂k − 1} and q̂3. These principles are illustrated

in figure 1-(b), and we present the recursive algorithm 2 to

generate a sequence of gates that approximate a monomial

of arbitrary degree. Sequences of gates are presented as a

sequence of generators evolved for a certain time, using the

following operators: the + operation concatenates lists, the ∗
operation with an integer M repeats M times the sequence,

− is a sequence realized backward with opposite times (e.g.

− [ {A, t}, {B,−s}] = [ {B, s}, {A,−t}]. Using this subrou-

tine 2 we can generate the gate sequence for the time evolution

of the full KvN Hamiltonian H =
∑d

k ak{p̂, q̂k} Trotterising

each of the monomials, as detailed in the algorithm 3.

52



Algorithm 2 Mono: Recursive Gate sequence to approximate the evolution of {p̂, q̂k}
Hyper-parameters :

• M a sequence of integers for the number of Trotter steps for each order.

Inputs :

• k ≥ 2 the target degree of the monomial

• t the requested time interval

Outputs :

• G = [{Hi, ti}]i∈�0,L� a sequence of gates (defined as a generator for a certain time)

Execute :

if k = 2 then 	 end of recursive

s := 1
M(k,1)

√
t
3

G := [{p̂2,−s}, {q̂3,−s}], {p̂2,+s}], {q̂3,+s}]] ∗M(k, 1)
else 	 intermediate levels

r := 1
M(k,1)

√
s
6 , to get q̂k+1 for s using 7:

F :=
(
Mono(k − 1,−r) +

[
q̂3,−r

]
+ Mono(k − 1,+r) +

[
q̂3,+r

]) ∗M(k, 1) 	 recursive

s := 1
M(k,2)

√
t

k+1 , to get {p̂, q̂k} for t using 6:

G :=
(
F +

[
p2,−s

]− F +
[
p2,+s

]) ∗M(k, 2)
end if
Return G

Algorithm 3 Poly: approximate time evolution of KvN Hamiltonial

Hyper-parameters :

• M a sequence of integers for the number of Trotter steps for each order.

Inputs :

• d the degree of the polynomial

• {ak}k∈�0,d� the coefficient of the polynomial

• t the requested time interval

Outputs :

• G = [{Hi, ti}]i∈�0,L� a sequence of gates

Execute :

G :=
[
{p̂, a0t

MrM(0)}
]
∗M(0, 0)

G := G+
[
{p̂q̂ + q̂p̂, a1t

MrM(1)}
]
∗M(1, 0)

for k = 2 to d do
G := G+ Mono

(
k, akt

MrM(k,0)

)
∗M(k, 0) 	 using algo 2

end for
G := G ∗Mr

Return G

B. Trotter error and unbounded operators

The general Trotter error is expressed as O(‖[A,B]‖t2),
which includes the spectral norm of an unbounded operator.

However, on physical computers the energy of states is limited,

therefore we present a potential way forward introducing

the energy-constrained circle norm (ECCN), inspired by the

energy-constrained diamond norm that is extensively used in

the study of continuous variable channel capacities [14]. We

define the energy-constrained circle norm for an operator M ,

and using N̂ for the number operator as:

‖M‖N := max
|ψ〉,〈ψ|N̂ |ψ〉≤N

〈ψ | M | ψ〉
〈ψ | ψ〉 (8)

For future work, we would on the one hand characterize the

ECCN for all gates in our model of computation as seen

in section II-C as a function of the evolution time and the

energy constraint, and on the other hand estimate the evolution

of expectation value of the number of photons using the

Heisenberg picture [H, N̂ ]. With this combined information

we expect it should be possible to find some bounds. This

represents an extensive piece of work and is left for later

analysis, this paper’s scope being limited to outlining an idea.

Such an analysis will enable the optimization of the number

of Trotter steps for each breakdown into commutator in the

nested structure, tagged M in the subroutines 2.
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