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Abstract—Current quantum computers have the potential to
overcome classical computational methods, however, the capabil-
ity of the algorithms that can be executed on noisy intermediate-
scale quantum devices is limited due to hardware imperfections.
Estimating the state of a qubit is often needed in different
quantum protocols, due to the lack of direct measurements. In
this paper, we consider the problem of estimating the quantum
state of a qubit in a quantum processing unit without conduct-
ing direct measurements of it. We consider a parameterized
measurement model to estimate the quantum state, represented
as a quantum circuit, which is optimized using the quantum
tomographic transfer function. We implement and test the circuit
using the quantum computer of the Technical Research Centre of
Finland as well as an IBM quantum computer. We demonstrate
that the set of positive operator-valued measurements used for the
estimation is symmetric and informationally complete. Moreover,
the resources needed for qubit estimation are reduced when direct
measurements are allowed, keeping the symmetric property of
the measurements.

Index Terms—quantum state estimation, quantum tomog-
raphy, symmetric informationally complete positive operator-
valued measurements, quantum tomographic transfer function,
quantum computing

I. INTRODUCTION

The development of quantum technology in recent years
provides numerous advantages over its classical counterparts,
making it promising for a wide range of applications [1], [2].
One of the applications of quantum technology concerns the
development of quantum computers [3], whose computations
are based on quantum bits (qubits). Current research in quan-
tum computing includes the development of algorithms for
problems that are computationally hard to solve on a classical
computer and implement them on a quantum processing unit
(QPU). These quantum devices have already shown advantages
over their classical counterparts [4], [5], however, limitations
arising from their hardware imperfections must be considered
in their analysis.

QPUs that have imperfections in quantum gates and mea-
surement processes [6] are often called noisy intermediate-
scale quantum (NISQ) devices [7], [8]. A finite coherence
time and imperfect performance of quantum gates limit the
complexity of the algorithms that can be implemented on
NISQ devices. Therefore, it is important to reduce these errors
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Fig. 1. Concept of the paper. We aim to estimate the qubit S in the state ρS0
without measuring it directly. Instead, we use two ancillary qubits (meters)
for that purpose. We propose a measurement model and optimize it using the
quantum tomographic transfer function. Optimization provides the optimal
interaction parameters Θ∗. After the interaction, measurements of the meters
allow us to compute the state estimate ρ̂S0 .

using quantum error correction algorithms [9], [10] or reduce
the gates needed to complete an algorithm. A specific set of
basis gates can be implemented on a particular QPU. Usually,
this corresponds to a set of single-qubit gates and a two-
qubit gate, often a controlled-NOT (CNOT) gate. Two-qubit
gates usually have error rates that are one or two orders
of magnitude higher than single-qubit gates, making them a
significant source of errors when executing quantum circuits
[6]. To perfectly characterize and benchmark NISQ devices,
we need to accurately estimate the state of a qubit.

Estimating the quantum state of a quantum computer is an
essential task to evaluate the performance of quantum algo-
rithms [11], [12]. A d-dimensional quantum state is identified
by a density operator, characterized by d2 − 1 real param-
eters, which are estimated using quantum state tomography
methods [13], [14] such as standard state tomography [12],
using universal single observables [15]–[17], machine learning
techniques [18], [19], or more recent classical shadow methods
[20], [21]. This process is described using a measurement
model [22], characterized by a set of positive operator-valued
measurement (POVM) elements, which are operators that
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describe the statistics of the measurement process. However,
not every POVM can completely estimate a quantum state, in
fact, the set of measurements that allow a complete estimation
of quantum states are known as informationally complete
POVM (IC-POVM) [23].

The performance of the POVM elements that characterize
an estimation process can be quantified and there are mea-
surements that lead to more accurate quantum state estimates.
In this work, the characterization of the measurements used
to estimate a state is done using the quantum tomographic
transfer function (qTTF) [24]. A special class of IC-POVMs
exhibits a symmetric attribute [25], which is often referred
to as the symmetric informationally complete POVMs (SIC-
POVMs). The applications of SIC-POVM include quantum
key distributions [26] and the measurement of various quantum
properties, including entanglement [27].

In this paper, we start with the problem of estimating the
state of one qubit in NISQ devices without conducting direct
measurements of it (see Fig. 1). Direct implementations of
tomography models such as [28], [29] in QPUs are usually
impractical due to the depth of the circuit that simulates the
interaction. Making modifications to our previous work [30],
in this paper we propose a quantum circuit to estimate a
qubit state measuring two ancillary qubits. A notable result
of this paper is that the quantum circuit requires only two
single qubit gates and two CNOT gates to estimate the qubit
state, reducing gate errors. Moreover, the POVM elements that
characterize the estimation model are SIC-POVMs, meaning
that the estimate’s precision is independent of the initial state.
Finally, we show that when measurements over the estimated
qubit are allowed, the circuit is reduced and requires only one
CNOT gate, keeping the symmetric property of the POVM
elements.

The paper is organized as follows. In Sec. II a parameterized
measurement model is proposed. We describe the measure-
ment model, how it is used to estimate the qubit, and the
optimization of the estimator using the qTTF [24]. In Sec. III
we propose a parametrized circuit that was optimized to
perform qubit estimates and implemented on an IBM quantum
computer and the Technical Research Center of Finland (VTT)
quantum computer. An analytical analysis of the measurement
model in Sec. IV allowed us to determine that the optimization
procedure led to a set of SIC-POVM elements. Also, we show
how the quantum circuit can be simplified when measurements
over the estimated qubit are allowed, keeping the symmetric
property of the POVMs. The work is concluded in Sec. V.

II. QUBIT STATE ESTIMATION MODEL

This section presents the estimation model used in this work.
In Sec. II-A we construct the measurement model described
by the interaction between the qubit and the meters. Then,
in Sec. II-B, we describe the estimation method using the
measurement results. Finally, Sec. II-C shows the criteria for
selecting the interaction parameters that allow better estimates.

A. Measurement model

The tomography of a qubit S is done by measuring the
ancillary qubits A and B, known as meters, providing in-
formation about the Bloch vector components of the qubit.
Different interactions with the meters lead to partial [31], [32]
and complete [29] estimates of the Bloch vector. We consider
a one-qubit quantum state described by the density operator
ρ0.

The Hamiltonian H, independent of time, describes the in-
teraction between the system and the meters. The Hamiltonian
defines the evolution operator U(Θ) = e−iTH/ℏ, that depends
on the parameters Θ defined from the form of the Hamiltonian
and the time parameter T .

After the interaction, we can prepare the estimation setup.
For this purpose, the meters A and B are initialized in the
state |0⟩, while the system is in an arbitrary state ρS0 . The joint
quantum state of the estimated qubit and the meters S+A+B
is ρ0 = ρS0 ⊗ |0A⟩ ⟨0A| ⊗ |0B⟩ ⟨0B |. After the interaction we
have

ρf (Θ) = U(Θ)
(
ρS0 ⊗ |0A⟩ ⟨0A| ⊗ |0B⟩ ⟨0B |

)
U†(Θ). (1)

Operator U(Θ) can then be decomposed into the compu-
tational basis of subsystems A and B using the completeness
relation

∑
i |iA⟩ ⟨iA| = I as follows:

U(Θ) =
∑

i,k,j,l=1,0

⟨kAlB | U(Θ) |iAjB⟩ ⊗ |kAlB⟩ ⟨iAjB |

=
∑

i,k,j,l=1,0

Ukl,ij(Θ)⊗ |kAlB⟩ ⟨iAjB | .

Using the decomposition, state (1) can be written as

ρf (Θ) =
∑

k,l=0,1

Mkl(Θ)ρS0M
†
kl(Θ)⊗ |kAlB⟩ ⟨kAlB | , (2)

where we have used short-hand notation Mkl(Θ) =
Ukl,00(Θ) = ⟨kAlB | U(Θ) | 0A0B⟩. Notice that the operators
Mkl with k, l ∈ {0, 1} act over the system ρS0 . Moreover, those
are the Kraus operators representing the state change, given
the outcomes k and l that are observed.

From the Kraus operators, we can now extract the POVM
elements

Ekl =M†
klMkl. (3)

The four possible outcomes of the measurement have proba-
bilities

pkl = Tr
(
Mklρ

S
0M

†
kl

)
= Tr

(
Eklρ

S
0

)
, (4)

where ρS0 is either a pure or mixed density operator of the
initial state. The final unnormalized state of the system after
the measurement outcome k, l is then

ρSkl =Mklρ
S
0M

†
kl

In this paper, the measurement model is employed to estimate
a qubit in a pure state ρS0 = |ψS

0 ⟩ ⟨ψS
0 |.
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B. Qubit state estimator

Here we describe the methods used to estimate the initial
state of the qubit S. The first one is the estimation by linear
inversion (LI) [33], [34] and the second is the maximum
likelihood estimator (MLE) [35]. The latter always predicts
positive semi-definite physical states but is computationally
more expensive. Recall the state ρS0 of the qubit S. An equiv-
alent description uses the column vector s = (s0, s1, s2, s3).
Here s0 = 1 due to normalization, and the components s1, s2,
and s3 correspond to the x, y, and z components of the Bloch
vector respectively. The density matrix of the system can be
written by

ρS0 =
1

2

3∑
µ=0

sµσµ, (5)

where σ0 is the two-dimensional identity matrix, while σ1, σ2,
and σ3 are the Pauli matrices σx, σy , and σz , respectively.

Recalling the probabilities of the four outputs in Equa-
tion (4) in terms of the POVM elements, and using the index
ν ∈ {0, 1, 2, 3} for the binary outcome pair (k, l), we define
matrix elements Tνµ as

Tνµ =
1

2
Tr (Eνσµ) . (6)

Using (4), we can write the output probabilities as

p = Ts. (7)

The measurement matrix is invertible if det(T) ̸= 0, a
condition that relies upon the interaction parameters Θ. if it
is invertible, we can solve s = T−1(Θ)p. This allows us to
estimate s using estimates of the probabilities p̂k = nk/N .
Then, the components of the Bloch vector can be estimated
by

ŝµ =

4∑
ν=0

[
T−1(Θ)

]
µν
p̂ν , (8)

which is the LI estimator [33], [34].
The linear estimates may lead to nonphysical states, which

should be positive semi-definite states. This can be avoided by
imposing the conditions [36] ŝ0 = 1 and

(1− r̂0) ŝµ = r̂µ (9)

for µ = 1, 2, 3, where

r̂µ =
4∑

ν=1

p̂ν
p̌ν(Θ)

Tνµ(Θ). (10)

The parameters p̌k are not the estimators from the results
of the experiment, they correspond to the estimate of the
probabilities from the relation (8) using ŝ instead of s. The
complexity of the measurement matrix makes the evaluation of
these conditions difficult. However, the RρR Algorithm allows
us to make the estimation numerically [35].

The estimation ρ(n+1) is computed from the previous esti-
mate ρ(n) as

ρ(n+1) = N
[
R
(
ρ(n)

)
ρ(n)R

(
ρ(n)

)]
, (11)

where N [·] denotes normalization to the unity trace of the
corresponding operator, where

R =
3∑

µ=0

r̂µσµ.

In terms of the Bloch vector components, we have

ŝ(n+1)
µ =

2r̂
(n)
µ − ŝ

(n)
µ γ̂(n)

2r̂
(n)
0 + γ̂(n)

, (12)

where

γ̂(n) =
3∑

µ=1

(
r̂(n)µ

)2
−
(
r̂
(n)
0

)2
.

This makes that ŝ(n)0 = 1 for every n. The initial state for
the numerical implementation of this algorithm is the state
ŝ(0) = (1, 0, 0, 0).

C. Characterization of the estimator

Every set of parameters Θ defines a different estimator. Its
performance is evaluated using the Fisher information matrix
[37].

The estimate is made using a quantum circuit that is
executed N times producing nm random samples of the
measurement m. Then, we depose from a set of detections
n = {n0, . . . , nm} where

∑
m nm = N that have a multino-

mial distribution

p(n | p) = N !
m∏
i=0

1

ni!
[pi]

ni . (13)

We can estimate the theoretical probabilities pi with p̂i =
ni/N and limN→∞ p̂i = pi. Since the estimator is unbiased
the Cramér-Rao relation Cov(ŝ, ŝ′) ≥ J−1(s) is satisfied [37].
The matrix J is known as the Fisher information matrix, with
components [34]

Jµν(s) = −E
[
∂2 ln [p(n | p)]

∂sµ∂sν

]
. (14)

Using p(n | p) described above (13), the Fisher information
matrix components are proportional to the number of samples
N . We drop the N term to consider only F which is related
to the Fisher matrix by J = NF, with components

Fµν =
m∑
i=0

1

pi

∂pi
∂sµ

∂pi
∂sν

. (15)

The matrix F depends only on the state that will be esti-
mated and the interaction parameters Θ. For the measure-
ment model described in Sec. II-A, if we define the matrix
P = diag(p0, p1, p2, p3), the components of the Fisher matrix
take the form

Fµν =
[
T⊤P−1T

]
µν
. (16)

The indexes µν take the values associated with the estimated
quantities, that is, µ, ν ∈ {1, 2, 3} since ∂pi/∂s0 = 0.
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Now, we take the trace of the inverse of this matrix (which is
related to the covariance matrix) to characterize the estimator.
We name this the Fisher error parameter and it has the form

∆(Θ, s) = Tr
(
F−1(Θ, s)

)
. (17)

We are interested in making this error parameter small, but
it depends on the initial state and the interaction parameters.
To characterize the estimator independently of the initial state
s, we have to introduce the quantum tomographic transfer
function (qTTF) [24]. This is defined as the average of the
error parameter over all the possible initial states of the system.
Without lose of generality, we will implement this tomography
model to estimate pure quantum states of the form

|ψS
0 ⟩ = c0 |0⟩+ c1 |1⟩ . (18)

Pure quantum states can be written in terms of the parameters
ξ = {α1, α2} as c0 = eiα2 cosα1 and c1 = e−iα2 sinα1,
where α1 ∈ [0, π/2], and α2 ∈ [0, π]. Then, s = s(ξ). With
this parametrization, we are ready to define the qTTF as

qTTF(Θ) =
1

V

∫
ξ

∆(Θ, s(ξ))dξ, (19)

where V =
∫
ξ
dξ = π. As we can note, the qTTF does not

depend on the initial state, only on the interaction parameters
Θ. Then, the best estimator will be the one whose interaction
parameters satisfy

Θ∗ = argmin
Θ

qTTF(Θ). (20)

Once we have characterized the estimator, we can find the
best set of parameters Θ∗ to implement the measurement
model.

III. QUANTUM SIMULATION AND RESULTS

In this section, we construct a parametric circuit to estimate
the qubit state and implement it on three different backends.
In Sec. III-A we describe the circuit and optimize it using the
qTTF. Then, in Sec. III-B we specify the quantum hardware
used for the implementations. Finally in Sec. III-C we show
and discuss the results.

A. Parameterized quantum circuit

The interaction circuit proposed here consists of a
parametrized circuit modified from our previous research [30].
This circuit shown in Fig. 2 uses only two CNOT gates for
performing a complete estimation of the qubit S.

The circuit depends on twelve parameters, three for each U
gate:

U(θ⃗) = U(θ, ϕ, λ) =

(
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

)
. (21)

Optimization of the qTTF over these parameters is accom-
plished using random initial parameters and the Nelder–Mead
optimization method from SciPy [38]. There are different sets
of parameters that optimize the qTTF to the same value. A

|0A⟩ UA1
UA2

|ψS
0 ⟩ • H •

|0B⟩ UB1
UB2

k l

Fig. 2. Parametrized circuit to estimate the qubit S performing measurements
over the qubits A and B. The U gates represent general rotations over the
Bloch sphere.

nice set of parameters Θ∗ found by this optimization (with
some detailed analysis in Sec. IV) is

θ⃗∗A1
= (− arccos

1√
3
,−π

4
, 0) θ⃗∗A2

= (0, 0, 0),

θ⃗∗B1
= (0, 0, 0), θ⃗∗B2

= (0, 0, 0),

corresponding to an average error of ∆̄ ≈ 8, which agrees
with the minimal possible error of a POVM to estimate a single
qubit pure state [39].

To study the estimation error for different initial states, in
Fig. 3, we graphed the Fisher error (17) as a function of α1

and α2. The parameters Θ1 and Θ2 where randomly chosen
while Θ∗ represents the optimal parameters. The magnitude of
the error value for the parameters Θ1,2 is larger with respect to
the graph of the optimal parameters. Also, between graphs Θ1

and Θ2, there are parameters that reduce the estimation error
for specific initial states showing that some sets of POVMs
are not symmetrical. Finally, the most notable result, is that
there are no variations of the error for any initial state when
the optimal parameters Θ∗ are chosen. This implies that the
accuracy of the estimates is independent of the initial state, a
characteristic of SIC-POVMs.

B. Quantum hardware specifications

The implementation of the circuit in Fig. 2 was made using
Qiskit [40]. The topology of the QPU is important for the
execution of the circuit. We selected three qubits that are
beside each other, placing the qubit S in the middle of the
meter qubits as in Fig. 4. Changing the order of the qubits
could imply the need for additional CNOT gates to execute
the circuit.

The implementation of our method with the IBM quantum
computer [41], [42] was made using the ibmq_lima QPU.
This is a five-qubit quantum processor of the type Falcon r4T.
For the implementation, we used the qubits 0, 1, and 2 for A,
S, and B respectively. The basis gates of this processor are
CNOT (controlled-NOT), ID (identity), RZ (Rotation around
z axis), X (NOT), and SX (

√
X). Table I shows the relaxation

time (T1), the dephasing time (T2), the single-qubit gates error
(ϵ1), and the two-qubit gates error (ϵCX ).

Our method was also implemented on the VTT quantum
computer Helmi [43]. This is a five-qubit quantum processor
with basis gates CZ (controlled-Z), ID (identity), RX, RY,
and RZ (rotations around the x, y, z axis respectively). We
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Fig. 3. Error parameter in Equation (17) as a function of the state parameter
ξ = {α1, α2} for different sets of parameters Θ. The values Θ1 = {θ⃗A1

=

(2.01, 1.32, 0.51), θ⃗A2
= (0.00, 4.60, 4.24), θ⃗B1

= (0.95, 5.56, 4.48),

θ⃗B2
= (2.35, 0.54, 0.60)} and Θ2 = {θ⃗A1

= (2.26, 2.48, 5.25), θ⃗A2
=

(3.07, 5.18, 6.07), θ⃗B1
= (1.47, 5.88, 5.3), θ⃗B2

= (1.18, 1.09, 3.68)}
where randomly chosen. The final graph corresponds to the already reported
optimal values Θ∗.

used the qubits QB1, QB3, and QB2 for the qubits A, S,
and B respectively. Table I show the relaxation time (T1), the
dephasing time (T2), the single-qubit gates error (ϵ1), and the
two-qubit gates error (ϵCZ).

C. Results and Discussion

Demonstrations of our estimation method were performed
by initializing the qubit S over the six eigenstates of the Pauli

A S B

Fig. 4. Choice of qubit order for the implementation of the circuit on a QPU.

TABLE I
CALIBRATION DETAILS OF THE IBMQ_LIMA AND HELMI QUANTUM

PROCESSING UNITS BY APRIL 2023.

IBMQ
Qubit T1(µs) T2(µs) ϵ1 ϵCX

0 40.09 105.23 5.80× 10−4 0 ↔ 1 : 7.96× 10−3

1 75.77 133.43 3.04× 10−4 1 ↔ 2 : 6.51× 10−3

2 27.92 89.73 5.94× 10−4

Helmi
Qubit T1(µs) T2(µs) ϵ1 ϵCZ

QB1 35.07 20.93 1.96× 10−3 QB1 ↔ QB3 : 0.0814

QB2 29.84 20.00 5.25× 10−3 QB2 ↔ QB3 : 0.0664

QB3 49.82 14.15 1.61× 10−3

matrices

X = {|ψz0⟩ , |ψz1⟩ , |ψx0
⟩ , |ψx1

⟩ , |ψy0
⟩ , |ψy1

⟩}

=

{
|0⟩, |1⟩, |0⟩+ |1⟩√

2
,
|0⟩ − |1⟩√

2
,
|0⟩+ i|1⟩√

2
,
|0⟩ − i|1⟩√

2

}
,

(22)

estimating each of these states 5 times, with 1024 shots per
circuit. The demonstrations were executed on three different
backends, the qiskit classical simulator qasm_simulator
(QASM), the IBM quantum computer ibmq_lima (IBMQ),
and the VTT quantum computer (Helmi). We consider the LI
estimator and the RρR algorithm, then, we graphed the purity
γ = Tr(ρ̂2) of the estimates for every state to find non-physical
states.

Fig. 5 shows that there are states where the LI algorithm
estimates states such that γ > 1, implying that is a non-
physical state. The graph shows that the non-physical predic-
tions took place when the state was near to being pure. For

z0 z1 x0 x1 y0 y1

State

0.6

0.7

0.8

0.9

1.0

1.1

P
u

ri
ty

QASM

IBMQ

Helmi

Linear Inversion

RρR Algorithm

Fig. 5. Purity of the averaged estimates on QASM (black), IBMQ (purple),
and the Helmi (orange) backends. The linear inversion estimates are shown
with a solid line while the RρR algorithm estimates are shown with a dashed
line. The shaded region envelopes the non-physical estimates.
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TABLE II
AVERAGE ESTIMATES ˆ⃗s = (ŝx, ŝy , ŝz) OF THE BLOCH VECTOR

s⃗ = (sx, sy , sz) USING THE QASM, IBMQ, AND HELMI BACKENDS. THE
DEMONSTRATIONS WERE IMPLEMENTED USING THE CIRCUIT DESCRIBED

IN FIG.2. THE CIRCUIT WAS EXECUTED 5 TIMES WITH 1024 SHOTS PER
EXECUTION.

QASM
State ŝx ŝy ŝz

|ψz0⟩ −0.05± 0.03 0.06± 0.04 0.96± 0.04

|ψz1⟩ 0.0± 0.06 0.04± 0.03 −0.997± 0.002

|ψx0⟩ 0.98± 0.02 0.04± 0.07 0.01± 0.05

|ψx1⟩ −0.98± 0.02 −0.0± 0.04 0.02± 0.03

|ψy0⟩ 0.01± 0.02 0.97± 0.05 −0.02± 0.06

|ψy1⟩ 0.02± 0.04 −0.99± 0.02 0.06± 0.05

IBMQ
State ŝx ŝy ŝz

|ψz0⟩ 0.09± 0.02 −0.04± 0.02 0.84± 0.06

|ψz1⟩ 0.03± 0.04 0.01± 0.04 −0.9± 0.07

|ψx0⟩ 0.993± 0.001 −0.04± 0.04 −0.1± 0.02

|ψx1⟩ −0.9± 0.04 −0.04± 0.08 −0.05± 0.1

|ψy0⟩ 0.2± 0.04 0.89± 0.04 −0.03± 0.03

|ψy1⟩ 0.04± 0.05 −0.81± 0.05 −0.09± 0.06

Helmi
State ŝx ŝy ŝz

|ψz0⟩ 0.08± 0.04 −0.12± 0.04 0.77± 0.06

|ψz1⟩ −0.03± 0.02 −0.02± 0.07 −0.49± 0.07

|ψx0⟩ 0.68± 0.05 0.11± 0.03 0.05± 0.05

|ψx1⟩ −0.47± 0.04 −0.26± 0.06 0.28± 0.03

|ψy0⟩ 0.16± 0.05 0.35± 0.06 0.14± 0.06

|ψy1⟩ 0.04± 0.09 −0.51± 0.08 0.26± 0.07

low purity estimates, the LI and the RρR algorithm results
are the same. For the following computations, we employ the
RρR algorithm to avoid this problem.

The results of the demonstrations for state estimation are
shown in Table II. The QASM simulator results show what
we would expect from a noiseless quantum computer with
a limited number of shots. The estimates computed from
the QASM simulator are the most accurate and precise. The
demonstrations on a real quantum computer are less accurate
than the QASM simulator as would be expected, due to
imperfections on the quantum computer gates as well as the
state preparation and measurement (SPAM) [6], [10]. The
estimates can be compared by computing the fidelity between
the initial state of the system ρS0 and the estimated state ρ̂S0 :

F(ρS0 , ρ̂
S
0 ) =

[
Tr

(√√
ρS0 ρ̂

S
0

√
ρS0

)]2
. (23)

Fig. 6 shows the average fidelity of the estimates for each
state. The QASM simulator shows accurate estimates with
fidelities near the unit while estimates of the real quantum
computers have lower fidelities, as expected from noisy hard-
ware. Estimates computed on IBMQ show fidelities between
0.90 and 0.99, greater than the estimates computed on Helmi
which are between 0.68 and 0.89, showing more accuracy on
the IBMQ quantum computer. This can be expected from the
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Fig. 6. Fidelity of the averaged estimates on a QASM simulator (black solid),
the IBMQ (purple dashed), and Helmi quantum computers (orange dotted).

coherence times and gate error rates of the QPUs shown in
Table I. This effect can also be seen as the fidelity of the
estimates executed on Helmi QPU tend to vary more between
different states.

IV. ANALYTICAL ANALYSIS

After the implementation, we decided to perform a theo-
retical analysis of the quantum circuit. The previous results
suggested that the measurements could be symmetric, which is
demonstrated in Sec.IV-A. Also, we noticed that the circuit can
be simplified when measurements of the S qubit are allowed,
shown in Sec.IV-B.

A. Understanding the circuit

The optimization of the qTTF is Haar-uniform over all the
states. This suggests that also the POVM elements that are
achieved will have symmetry similar to that of the state space.
Moreover, optimization should provide an extremal POVM.
These observations give us the possibility to analytically
analyze the optimized circuit.

The first point to notice is the fact that the operators Ekl

are SIC-POVMs [25]. This means, with Ekl =
1
dΠkl (trace is

1/d), satisfy

Tr(ΠklΠmn) =
dδkmδln + 1

d+ 1
, (24)

where d = 2 is the dimension of the system and Πkl are
1-dimensional projectors corresponding to outcome indices
(k, l). Indeed, to numerical precision, the traces of the POVM
elements are 1/2 and their computed overlaps are 1/12. This is
a welcomed result as SIC-POVMs are considered to be optimal
for state estimation [44], [45].

To better understand the formation of the SIC-POVM, we
can formally split the circuit into three parts, measurement
using subsystem A, intermediate Hadamard transform, and
measurement using subsystem B. This distinction is also
denoted in Fig. 2. Under considered splitting, we can obtain
POVM elements for these parts in a similar way as was done
above for the whole circuit which leads to Equation (3).
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Fig. 7. Simplified circuit for estimation of qubit S when direct measurements
are allowed.

The measurement on subsystem B turns out to be phased
projections to either state |0⟩ or |1⟩. Firstly, as the measure-
ment is final and we do not care about the state change, we
can replace it with a simple z-measurement. This simplifies
the measurement considerably, as there is no need for the
rotations UB1

and UB2
. Understandable, because if the last

measurement would not be projective, its sharpening would
lead to a better resolution, which should not be the case for
optimal measurement. Another point to notice is that once we
remove the unitaries on the B system, we are only left with the
CNOT coupling gate. If we accept the possibility of measuring
system S directly (which might not always be the case), we
can furthermore identify subsystem B with the system S and
perform the z-measurement directly on S.

B. Further simplification

Now let us consider a simplified circuit on subsystems S
and A that is composed of two generic unitaries UA1

and
UA2 on A, preceding and following the CNOT between S and
A, which is followed by a Hadamard on S and measurement
on S (see Fig. 7). Parametrizing the two unitaries by angles
(θ1, ϕ1, λ1) and (θ2, ϕ2, λ2) respectively, using the unitary
parametrization in Equation (21).

The POVM elements of the circuit are

Ekl =
1

4
[(1− kb)I + (lx1 − klx2)σx + klyσy + kzσz] ,

(25)
where

b = sin θ1 cosϕ1 sin θ2 cosλ2, (26)
x1 = sin θ1 cosϕ1, (27)
x2 = sin θ2 cosλ2, (28)
y = cos θ1 sin θ2 sinλ2 − sin θ1 sinϕ1 cos θ2, (29)
z = cos θ1 cos θ2 + sin θ1 sinϕ1 sin θ2 sinλ2. (30)

We can notice the independence on λ1 and ϕ2, which can be
set arbitrarily. In order for the elements to form SIC-POVM
we want to fulfill both Equation (24) and the normalization

Tr(Ekl) =
1− kb

2
=

1

2
. (31)

The latter condition leads to the requirement

b = sin θ1 cosϕ1 sin θ2 cosλ2 = 0, (32)

which leads to four (not necessarily disjoint) conditions for
the four relevant angles. Simple evaluation of cases sin θ1 = 0
and cosϕ1 = 0 does not give a solution, because the Bloch
vectors representing the directions of the measurements of

the four POVM elements are co-planar and the normalization
(24) cannot be fulfilled. The case of cosλ2 = 0 is a non-
trivial case for which the numerical optimization given above
is an example of. While this case may provide a whole class
of solutions, a more interesting case is the last one, where
sin θ2 = 0. We will not perform a full analysis, but rather a
simplified analysis that leads to a solution that is of interest.

The normalization condition does not depend on λ2, which
we can set arbitrarily. We can thus go for the choice
(θ2, ϕ2, λ2) = (0, 0, 0) which gives UA2 = I . This choice
reduces the number of non-trivial gates, which is important
from a practical point of view.

Furthermore, from the normalization condition we get that
cos 2θ1 = ± 1

3 and

| cos2 θ1 ± sin2 θ1 cos 2ϕ1 |= 1

3
. (33)

The two conditions together require cos2 θ1 = 1
3 and

cos 2ϕ1 = 0. To obtain the same POVM elements as in the
numerical optimization above, we can choose

θ1 = − arccos
1√
3
, ϕ1 = −π

4
, λ1 = 0. (34)

This leads to the final form for the POVM elements,

Ekl =
1

4

[
I − 1√

3
(lσx + klσy − kσz)

]
. (35)

Which corresponds to a set of SIC-POVMs. In fact, optimiza-
tion of the qTTF in Equation (19) where the initial values
are near to the values in Equation (34), the same solution is
found. This implies that a unique ancilla qubit and a circuit
with one CNOT gate are enough for performing estimates of a
qubit with SIC-POVMs. After peer review, we found a recent
work about optimal measurement operators in fermion-to-qubit
mapping [46]. That work suggests a similar circuit for optimal
state estimation to the one reported in this paper, however, the
interaction is deduced using a ternary trees technique. In Ref.
[45] the authors explore adaptative SIC tomography using a
variational circuit and the scope of SIC-POVMs against other
estimation techniques.

The estimation model reported here demonstrates being
efficient for single-qubit state estimation protocols in quantum
processors. The unitary operation of the quantum circuit in
Fig. 7, transpiled into IBMQ basis gates, requires 1 CNOT
gate and 7 single-qubit gates. A recent experimental setting
for tomography executed in an ion-trapped quantum processor
requires a unitary operator that, when expressed into IBMQ
basis gates, requires 2 CNOT gates and 19 single-qubit gates
[21].

Further improvements in the estimation protocol can be ad-
dressed. For example, classical shadow tomography strategies
can be considered to reduce the number of shots used to
estimate a quantum state [20], [21]. If the initial state is pure,
we can diagonalize the density matrix ρ̂S0 , find the dominant
eigenvalue, and take its eigenstate. This corresponds to the
pure state |ψ̂S

0 ⟩ = cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩ , where the
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Fig. 8. Fidelity of the averaged estimates using the simplified circuit 2 and
taking the dominant eigenstate of the density matrix. The estimates were
implemented on a QASM simulator (black solid), the IBMQ (purple dashed),
and Helmi quantum computers (orange dotted).

angles θ and ϕ are defined from the vector ˆ⃗s = (ŝx, ŝy, ŝz)
represented in spherical coordinates [3].

Fig. 8 shows the fidelity of the estimates using the sim-
plified circuit in Fig. 7 taking the dominant eigenstate of the
estimation. We can see that the estimates have fidelities above
0.97 for IBMQ and above 0.88 on Helmi quantum computer,
showing an outstanding performance of the estimation method
even in noisy quantum computers.

V. CONCLUSIONS

Quantum computers have limitations running complex
quantum algorithms due to their hardware imperfections. As-
sessing the effectiveness of quantum algorithms requires the
task of determining the quantum state of a quantum com-
puter via quantum tomography. Several quantum tomography
models have been developed and they can be characterized
by the set of POVMs employed to compute an estimate. A
distinguished set of POVMs corresponds to those that are
symmetric informationally complete, due to their symmetric
properties and applications in different fields related to quan-
tum information processing.

In this paper, we considered the problem of estimating the
quantum state of a qubit when direct measurements are not
possible. To perform the task, we employed the parametric
circuit in Fig. 2 that needs only two CNOT gates to compute
complete state estimation of a qubit S by measuring the
ancillary qubits A and B. The optimal parameters Θ∗ that
characterize the circuit are determined by optimization of the
qTTF [24], which is the average of the Fisher error parameter
over all possible initial states. Fig. 3 shows the Fisher error
for different sets of parameters, including the optimal set
Θ∗. It can be seen that the optimal parameters correspond to
estimates with the lowest error and no variations depending on
the initial state. A theoretical analysis of the estimator showed
that the optimal parameters Θ∗ correspond to a set of SIC-
POVM elements to estimate the qubit S.

Two estimation methods were implemented, the LI estima-
tor and the RρR algorithm. According to Fig. 5, LI estimates
are occasionally non-physical states while the RρR algorithm
always generate physical states. However, the latter estimation
method is computationally more expensive. Estimates with low
purity are the same for LI and RρR estimates. To avoid the
non-physical estimate problem, we decided to use the RρR
algorithm.

The demonstrations were implemented on the classical
QASM simulator, the ibmq_lima quantum computer, and
the Helmi quantum computer. The results of the Bloch vector
components estimates are shown in Table II. Demonstrations
on QASM simulator show the highest accuracy and precision
in the estimates since there is no noise affecting the implemen-
tations. Demonstrations on quantum computers showed noisy
estimates. Results from the demonstration on IBMQ show
higher fidelity than results from Helmi. The demonstrations
were also evaluated by considering the fidelity of the estimate.

The proposed circuit allows us to compute estimates that can
reach high-fidelity values on real quantum computers. Fig. 6
shows that demonstrations on IBMQ have fidelities between
0.90 and 0.99 despite the hardware errors associated with
NISQ devices. Demonstrations on Helmi show lower accuracy
with respect to IBMQ, due to the higher error rates and shorter
coherence times of Helmi QPU.

The analytical analysis of the measurement model per-
formed in Sec. IV allowed us to simplify the circuit. The
POVM elements associated to the circuit with optimal param-
eters Θ∗ are symmetric informationally complete according
to [25]. Moreover, these SIC-POVM elements can be written
in a way such that the gates UA2 , UB1 , and UB2 are the
identity operators while the UA1 gate have angle parameters(
− arccos(1/

√
3),−π/4, 0

)
. The previous setup was built

considering a limitation of measuring the qubit S, however,
if measurements over S qubit are allowed, the circuit can be
reduced to the circuit in Fig. 7. When pure states are estimated,
it is possible to consider the dominant eigenstate of the esti-
mated density matrix, leading to results with fidelities above
0.97 for IBMQ and 0.88 for Helmi, delivering satisfactory
results even on noisy quantum computers.

It is important to take into account the topology of the
QPU, the distribution of the qubits could affect the number
of gates used. Here we assumed that the qubit S has two
additional qubits besides it as specified in Sec. III-B. Also,
There could be cases where the two-qubit basis gate of the
QPU is not a CNOT. In that case, the circuit in Fig. 2 can be
modified to include such changes, performing the optimization
following the same methodology. Also, after the measurement,
it has to be taken into account that the qubit S does not
remain in the same state. The estimates can be improved by
the implementation of error mitigation algorithms that take
into account, for example, state preparation and measurement
errors, as well as quantum gate errors at different stages of
the estimation [6], [10].
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