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Abstract—We present a protocol to encode and decode arbi-
trary quantum states in the parity architecture with constant
circuit depth using measurements, local nearest-neighbor and
single-qubit operations only. While this procedure typically re-
quires a quadratic overhead of simultaneous qubit measurements,
it allows for a simple and low-depth implementation of logical
multi-qubit gates in the parity encoding via code deformation.
We discuss how such encoding and decoding schemes can be
used to flexibly change the size and shape of the underlying code
to enable a more efficient implementation of quantum gates or
algorithms. We apply the new findings to the QAOA which leads
to a constant depth implementation using local gates at the same
optimization performance as the standard, potentially non-local,
QAOA approach without the parity encoding. Furthermore, we
show that our method can reduce the depth of implementing the
quantum Fourier transform by a factor of two when allowing
measurements.

I. INTRODUCTION

The development of quantum computers has made huge

steps in the last decades on the theoretical as well as on the

experimental side, paving the way for demonstrating quantum

advantage. The main achievements include quantum devices

particularly designed for solving optimization problems [1]–

[3] as well as universal quantum computers [4]–[7]. How-

ever, there are still hardware limitations researchers have to

tackle [8]–[11]. One the one hand, these include error-prone

gates, which set a limit to the maximal number of gates

feasible in a quantum circuit, while on the other hand quantum

decoherence limits the maximal circuit depth. In the long term,

these difficulties are expected to be tackled via error correction

techniques [12]–[15]. In the noisy intermediate-scale quantum

(NISQ) era [16], however, quantum errors have to be mitigated

or avoided by minimizing the number of gates and the circuit

run time.
Recently, a universal gate set for the parity architecture [17]

was proposed, allowing for an efficient implementation of

corner-stone quantum algorithms like the quantum Fourier

transform [18], [19]. In the parity encoding, operators diag-

onal in the Z-basis are implemented with physical single-

qubit operations, while most non-diagonal operators require

CNOT sequences of depth scaling linear with the system size.

Similarly, the encoding and decoding processes presented in

previous works require sequences of CNOT gates of linear

depth.

In this work we introduce protocols related to methods

known as lattice surgery and code deformation [20], [21] to

replace these sequential CNOT gates by parallel measurements

and single-qubit gates (see Fig. 1). In particular, we build upon

the ideas of quantum state teleportation [22] to encode states in

the parity architecture in constant circuit depth by performing

stabilizer measurements and applying bit-flips dependent on

their outcome. Similarly, we show that decoding can be

performed using single-qubit measurements and conditional

phase-flip operations. The constant depth implementation of

the proposed encoding and decoding schemes implies that

also non-diagonal gates can be implemented in the parity

architecture with constant depth. For single-qubit gates this

is achieved by decoding the system to act on, performing the

gate on the logical qubits, and encoding again.

One of the most promising candidates to show quantum

advantage in the NISQ-era in solving combinatorial opti-

mization problems is the Quantum Approximate Optimization

Algorithm (QAOA) [23]. As the parity mapping exhibits

various benefits for the implementation for such optimization

algorithms [24], [25], we apply our findings to the QAOA and

in particular show how the new encoding approach leads to a

constant-depth implementation of the QAOA in the parity ar-

chitecture while implicitly preserving all parity constraints by

using logical bit-flip operators in the mixing Hamiltonian [26].

So far, parity QAOA was either implemented in constant depth

by enforcing (at least part of) the parity constraints via an

additional energy penalty in the cost function [24], [27], [28]

or fulfilling the constraints implicitly at the cost of a linear cir-

cuit depth [27]. Our approach combines the advantages of the

constant-depth parity QAOA and fully constraint preserving

(implicit) parity QAOA by exhibiting the same Hilbert-space

and classical search space as the optimization problem in the

original formulation while featuring constant circuit depth.

The remainder of this paper is organized as follows. In

Sec. II, we briefly review the basics of the parity code, on

which we build our new approach. We then introduce the

concept of code deformation in the parity architecture in
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Fig. 1: Comparison of two different encoding and decoding schemes for a single parity qubit in the LHZ layout: (a) Using

CNOT gates, the qubit indicated by an empty circle is in the state |0〉. (b) Using measurements and classical corrections. Here,

the qubit indicated by an empty circle is in the state |+〉 before the encoding and in either |+〉 or |−〉 after decoding. The

encoding requires an ancilla qubit initialized in the state |0〉 which could for example be placed in the center of the constraint

(see Fig. 2). For both cases, the constraint used for the de- or encoding is highlighted in yellow.

Sec. III, and outline some applications in Sec. IV. Finally,

some conclusive remarks can be found in Sec. V.

II. THE PARITY CODE

The parity code [17], [29] can be described as a stabilizer

code in which n logical qubits are encoded into K physical

qubits such that single-body physical Pauli-Z operations trans-

late to products of logical Z operations. Therefore, in the code

space, computational basis states of physical qubits encode

the parity of the basis states of logical qubits. We label each

physical qubit with the set L containing the indices (i, j, . . . )
of exactly these logical qubits, such that for any |ψ〉 in the

code space1

Z(i,j,... ) |ψ〉 = Z̃iZ̃j . . . |ψ〉 (1)

holds. Here and in the following, we denote logical operators

with a tilde. We further call physical qubits which encode the

parity of at least two logical qubits parity qubits, and physical

qubits corresponding to only a single logical qubit data qubits.

While it is in principle not necessary to include data qubits

in the code, their presence simplifies many operations and

ensures that there is no ambiguity in the definitions of logical

states. Unless otherwise stated, we therefore only consider

code constructions which include a data qubit for every logical

qubit in this work.

The stabilizer of this code is generated by a set of parity

constraints of the form
∏

i ZLi , where Li are the sets of logical

qubit indices labelling physical qubits such that every logical

1For better readability, we use round brackets for these labels whenever
explicitly stating the logical indices. Note, however, that this does not imply
any ordering.

index appears an even number of times in the whole product,

i.e., the symmetric difference of all sets in the constraint is

the empty set,

L1 � L2 � · · · = ∅. (2)

Equation (1) implies that a valid code state is an eigenstate of

all constraints with eigenvalue +1 by construction,

∏
i

ZLi
|ψ〉 =

∏
i

∏
j∈Li

Z̃j |ψ〉 = |ψ〉 , (3)

as all duplicate logical operators cancel each other. The

smallest set of generators must contain K − n independent

constraints (independent in the sense that no constraint can be

represented by the product of any others). For many logical

circuits, there exists a layout for the physical qubits along

a two-dimensional square lattice such that the stabilizer can

be generated by a set of geometrically local constraints. As an

example, the illustrations on the left side of Fig. 1a-b show the

so-called LHZ layout, which encodes a parity qubit for every

two-body parity of logical qubits and additionally a data qubit

for every logical qubit. In this layout, every parity constraint

occupies only a 2× 2 square or triangle (plaquette) of qubits

on the layout.

A. Logical operations

In the following we define logical operators in the physical

Hilbert space. According to Eq. (1), we define the logical

Pauli-Z operator as

Z̃i = Z(i). (4)
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Note that this operation is directly implementable if and only

if the corresponding data qubit is part of the code. Similarly,

arbitrary collective Z-rotations of multiple logical qubits

R̃ZiZj ...(α) = exp
(
−iα

2
Z̃iZ̃j . . .

)
(5)

can be implemented due to their equivalence to the physical

single-qubit rotation (up to multiplication with stabilizer gen-

erators) as

RZ(i,j,...)
(α) = exp

(
−iα

2
Z(i,j,... )

)
(6)

whenever the corresponding parity qubit is part of the code.

The logical Pauli-X operator, which preserves the code-

space and fulfils the necessary commutation relations can be

defined as

X̃i =
∏
j∈Qi

X(j), (7)

where Qi denotes the set of all physical qubits involving the

logical index i. In other words, a logical bit-flip is realized by

simply flipping all physical qubits whose labels include the

corresponding logical index.

Arbitrary logical rotations about the X-axis,

R̃Xi
(α) = exp

(
−iα

2
X̃i

)
, (8)

can be implemented with physical CNOT gates along a tree

which connects all involved physical qubits. See Ref. [18] for

a full description of a universal logical gate set.

B. Encoding and Decoding

The easiest way to create a valid code state of a given set

of parity and data qubits is to initialize all physical qubits in

the state |0〉. This state is stabilized by all parity constraints,

and corresponds to all logical qubits in the state |0〉. However,

it is also possible to encode an arbitrary logical state from

a physical state by defining the qubits describing that state

as the data qubits of the code. As there are no constraints

required within a set of exclusively data qubits, this is already

a valid code state, although it is just the trivial code. We

can then add parity qubits one-by-one by encoding them in

the state corresponding to the desired parity. Every added

parity qubit must always be accompanied by a constraint

which fixes the parity of the new qubit with respect to other

qubits of the code2. Before focusing on the measurement-

based encoding and decoding strategy in the remainder of this

paper, we briefly introduce the method presented in Ref. [18],

which makes use of CNOT gates between physical qubits of

the code and the newly added or removed qubit to encode

or decode parity information. Both the CNOT-based and the

measurement-based method are illustrated in Fig. 1.

As decoding is achieved by the same gate sequence as

encoding, we focus only on encoding in the remainder of

2This only applies if the corresponding parity can be represented in terms
of the existing qubits. If the parity qubit relates to a logical qubit which has
not appeared in the code yet, the size of the logical Hilbert space is also
increased and thus, no constraint is necessary.

this section. The new qubit must first be initialized in the

state |0〉. Then, after identifying a constraint which relates

the new parity qubit to the existing code qubits, CNOT gates

are applied from each of the other qubits in that constraint (as

control) to the new qubit (as target), as depicted in Fig. 1a. This

method is also commonly applied for other stabilizer codes:

Any new qubit with a stabilizer operator consisting solely of Z-

terms can be added or removed with such a sequence of CNOT

gates. Note that multiple different choices for such a constraint

might exist, which gives the user the freedom to choose

whichever constraint results in the least effort to implement

the CNOT gates. Ref. [19] suggests a number of applications

for which an efficient placement of physical qubits exists

such that there always are local constraints implementable

by nearest-neighbor interactions without additional overhead.

For the LHZ layout considered in Fig. 1, for example, the

parity qubits can be added in layers (diagonal in the figure)

from the first layer of data qubits. Every new parity qubit

can then be added to the code with the help of a three- or

four-body constraint of qubits in an adjacent square unit cell

connecting the new qubit to the previous layer, as described in

the supplemental material of Ref. [18]. The drawback of this

method is that the circuit depth for such an implementation

scheme typically grows with the problem size. This is due to

the fact that a local constraint fixing a new parity qubit can

depend on other parity qubits being encoded already and thus

not all the CNOT gates for the encoding can be applied in

parallel.

Depending on the layout of qubits which are encoded, some

improvements to the gate count and circuit depth are possible.

For example, in some cases the same CNOT gate can be used

to help encode multiple parity qubits at once. As there is a

lot of freedom in the choice of the CNOT sequence (see for

example the two alternative circuits representing the scheme of

Fig. 1a), such situations can be favoured with a clever choice

of CNOT gates. In order to directly construct a more efficient

encoding circuit, it helps to look the the action of a CNOT

gate at the level of computational basis states,

CNOT : |a〉c |b〉t �→ |a〉c |a⊕ b〉t , (9)

where c and t denote the control and target qubit, respectively,

a, b ∈ {0, 1}, and ⊕ denotes the addition modulo 2. Parity

qubits can be described similarly in dependence of their

corresponding logical qubits. If a set of logical qubits is in

the states |ai〉 , |aj〉 , . . . the state of the corresponding parity

qubit must be |a(i,j,... )〉 with

a(i,j,... ) = ai ⊕ aj ⊕ . . . . (10)

Therefore, a valid encoding procedure can always be con-

structed by applying a sequence of CNOT gates that collects

the desired logical information from the data qubits and

encodes it in the respective parity qubits.

III. ENCODING AND DECODING WITH MEASUREMENTS

In this section, we introduce an alternative way to change

the code, which is beneficial if a large chunk of qubits on

122



code qubit 
(parity or data qubit)
ancilla qubit

qubit connectivity

Fig. 2: Possible placement of ancilla qubits (blue) for con-

straint measurements. The minimal required qubit connectivity

is still along a square-lattice (but rotated). If physical interac-

tions between neighboring code qubits are required but not

available, they can also be mediated by an ancilla qubit.

the layout is to be en-/decoded at once. This new approach

uses measurements and classical corrections depending on the

measurement outcomes, and can be understood as a form of

code deformation [20] as has also been applied for example

in the surface code citeFowler2012.

For the encoding process, we start with a new qubit in

the state |+〉. We then choose a constraint which fixes the

parity qubit we want to encode relative to already existing

parity or data qubits and measure the value of this constraint.

If the constraint measurement indicates a violation of the

constraint, we perform a bit-flip operation on the new qubit.

The constraint measurement can, for example, be performed

on an ancilla qubit following a sequence of CNOT gates

targeting the ancilla and controlling each of the constraint

qubits (see Fig. 1, bottom circuit). For encodings like the LHZ

layout, where each constraint occupies at most a 2 x 2 cell

of qubits (see also Ref. [29] for more general layouts of this

form), the ancillas for constraint measurement can be placed

in the center of that cell, as indicated in Fig. 2.

For the decoding process, we directly measure the qubit

we want to remove in the X basis, and apply a conditional

phase-flip operation on all other qubits of a constraint which

fixed the removed qubit (see Fig. 1, middle circuit). Note that

this can be the same constraint which was used to encode

the qubit, but it can in principle be any set of parity or

data qubits with the same parity as the removed qubit. As

the communication in this protocol is purely classical and

non-local classical operations are not a problem, the most

straightforward choice is the constraint between the removed

qubit and the corresponding set of data qubits.

Equivalence of protocols

Figure 3 shows a derivation of the equivalence of the

measurement-based encoding and decoding schemes to the

gate-based scheme proposed in Ref. [18]. The decoding

process can be understood as the classical analog of the

corresponding CNOT sequence3, as introduced in Sec. II-B. If

the control qubit of a CNOT gate is measured after executing

the gate, the CNOT gate can be replaced by a conditional bit-

flip operator on the target qubit which is classically controlled

by the measurement outcome (see Fig. 3a). As decoded qubits

3For a direct analogy, consider the phase-kickback action of the CNOT
gate in the X-eigenbasis: It performs a phase flip on the control qubit if the
target qubit is in the state |−〉.
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Fig. 3: Circuit identities to derive measurement-based encod-

ing and decoding schemes. (a-b) Classical versions of the

CNOT gate in the Z- and X-basis, which are equivalent to the

corresponding quantum gate if followed by the corresponding

measurement. The decoding scheme can be derived by adding

a measurement operation on the decoded qubit (which has no

effect on the state of the remaining code qubits) and using

identity (b) for each CNOT gate of the original decoding

circuit. (c) Derivation of the encoding scheme with an ancilla

qubit initially in the state |0〉. In the first step, a CNOT gate

can be added without effect because the target qubit is in the

state |+〉, the second step uses the identity (a) and in the last

step the CNOT sequence is interpreted as a SWAP gate.

are disentangled from the code qubits and thus not required

anymore, we can measure these qubits without information

loss and use the same idea of replacing the CNOT gate

by a classically controlled operator, but now in the X-basis

(i.e., measuring the target qubit, see Fig. 3b), to replace the

CNOT gates of the original decoding algorithm by classically-

controlled phase-flip operations.

The measurement-based encoding scheme can be under-

stood by considering the concept of state teleportation [22]:

Instead of directly encoding the new parity qubit we first

encode the new parity onto an ancilla qubit and then teleport

its state onto the new parity qubit (see Fig. 3c for an illustrative

derivation of the state teleportation effect).

Simultaneous measurements and classical corrections

The main advantage of this measurement-based strategy is

that an arbitrary number of parity qubits can be simultane-

ously encoded or decoded in constant depth, irrespective of

dependencies between the parity qubits (via the constraints

used for the encoding or decoding). While for the CNOT-based

method, one has to add or remove the qubits one-by-one in the

correct order (such that every added or removed qubit can be

fixed using currently existing parity qubits in the geometrical

vicinity), in the measurement-based method we can apply all
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Fig. 4: Commutation relation of an X-measurement and the

corrective phase flip induced by another X-measurement when

decoding the qubits (0, 3) and (0, 2). The affected corrective

phase flip and the resulting flips after commuting are high-

lighted in yellow. Note that in a further optimization step, the

corrections on qubit (1, 2) due to the measurement on qubit

(0, 3) can be cancelled.

the gates and measurements in parallel. The conditional spin-

or phase flips then depend on multiple measurement outcomes,

but the processing of this information is purely classical. Note

that every constraint can only be used to encode or decode

a single qubit. It is, however, allowed to choose a constraint

which also contains other qubits which are added or removed

in the same step (using other constraints).

In a sequential implementation of the measurement-based

encoding scheme, the outcome of every constraint measure-

ment which contains more than one new qubit also de-

pends on whether some of these new qubits were flipped

by their respective encoding constraint measurements. As in

the constant-depth implementation this correction takes place

after all the constraint measurements, we need to reinterpret

the outcome of every measurement taking into account all

corrective flips which could affect the corresponding con-

straint. For example, consider removing qubits (0, 2) and

(0, 3) from the LHZ layout shown in Fig. 1 at the same

time using constraints (0,3)− (0, 2)− (1, 3)− (1, 2) and

(0,2)− (1, 2)− (0, 1) with simultaneous measurements (see

also Fig. 4). As there is a corrective Z-flip on qubit (0, 2)
conditioned on the measurement outcome on qubit (0, 3), the

Z flip condition for qubits (0, 1) and (1, 2) [which is the

outcome on (0, 2)] must be replaced by the product of the out-

comes on (0, 2) and (0, 3). Mathematically, this corresponds

to commuting the corrective flips with the measurement, as is

shown in Fig. 4 for the above example.

Similarly, when removing the two qubits from the code,

a sequential implementation would require qubit (0, 2) to

be added before qubit (0, 3). Full parallelization would be

blocked by the corrective bit-flip on qubit (0, 2). Even though

this qubit is not measured for adding the next qubit, it still

influences the corresponding constraint measurement via a

CNOT gate. This influence must be taken into account in

the fully parallel implementation, where all measurements are

performed before the corrections (see Fig. 5).

The final corrections for arbitrarily large code manipulations

can always be calculated iteratively (and classically) from the

Mz
=

0,1

1,2

1,3

ZX ZXZX

Mz
ZX

Mz

ZX

Mz

Fig. 5: Commutation relation of a Z-measurement and the

corrective bit flip induced by another Z-measurement when

encoding the qubits (0, 3) and (0, 2). Dashed lines correspond

to ancilla qubits used for constraint measurements. The af-

fected corrective bit flip and the resulting flips after commuting

are highlighted in yellow.

full set of measurement outcomes. For this, we define the

set S as the set of qubits for which we have determined the

necessary corrections.

Initially, S contains all qubits which are not subject to any

corrections. In the encoding process, these are precisely the

qubits which were already in the code before the encoding. In

the decoding process, this includes the qubits to be decoded

on which no other qubits depend via their respective decoding

constraints. Furthermore, it can include qubits which remain

in the code and are not in any of the decoding constraints. We

then apply the following steps until S contains all qubits:

1. Determine the corrections to the set S′ of all qubits whose

correction depends only on measurement results of qubits

in S, taking into account their determined corrections.

2. Update S by reassigning S ← S ∪ S′.

For example, when encoding the complete triangular LHZ

layout from only the data qubits, every step adds one di-

agonal row to S, starting at the row of data qubits and

finishing at the parity qubit at the opposite tip of the triangle

(see Fig. 6a). That is, we first determine the corrections to

qubits (0, 1), (1, 2), (2, 3), . . . , then the corrections to qubits

(0, 2), (1, 3), . . . and so on until qubit (0, N − 1). Reversely,

in the decoding process, we start with only the parity qubit

at the tip of the triangle, (0, N − 1), and in each step add

a row towards the final row of data qubits (see Fig. 6b).

Alternatively, one can choose different constraints for the

decoding and directly correct the corresponding data qubits

for every decoded parity qubit, as shown in Fig. 6c.

Note that in any case, the total depth of the quantum circuit

is only that of a single constraint or qubit measurement and a

single-qubit gate. All other logic is executed classically.

For the LHZ-layout and constraints as depicted in Fig. 6,

the exact formulas for the corrections after measurements can

be derived as follows. Let mz
ij ∈ {±1} denote the result of

the Z-measurement of the constraint used to encode the qubit

labelled (i, j), with i, j ∈ {0, 1, . . . , n− 1}. We further define

124



0

1

2

3

4

0,1

0,2 1,2

0,3 1,3 2,3

0,4 1,4 2,4 3,4

S4

S3

S2

S1

S0

(a)

0

1

2

3

4

0,1

0,2 1,2

0,3 1,3 2,3

0,4 1,4 2,4 3,4

S0

S1

S2

S3

S4

(b)

0

1

2

3

4

0,1

0,2 1,2

0,3 1,3 2,3

0,4 1,4 2,4 3,4

S0

S1

(c)

Fig. 6: Classical information flow to determine qubit corrections for encoding (a) or decoding (b) of a fully connected logical

system using simultaneous measurements. The colored regions contain the qubits in the set S at each time step of the classical

correction process, S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4. Panels (b) and (c) show two different choices of constraints used for decoding.

In panel (c), all parity qubits are decoded directly with respect to their corresponding data qubits, such that all classical

corrections can be calculated in a single iteration.

the spin variable

skl :=
l−1∏
i=k

l∏
j=i+1

mz
ij . (11)

corresponding to the product of all measurement results that

affect parity qubit (k, l). Then the correction that must be

applied to qubit (k, l) is

Cklenc =
[
X(k,l)

] 1
2 (1−skl) . (12)

For full decoding, let mx
ij denote the result of an X-

measurement of parity qubit (i, j). The correction operator

to be applied to data qubit (i) is then

Cidec =
[
Z(i)

] 1
2 (1−si)

, (13)

with

si =

i−1∏
l=0

mx
li

n−1∏
j=i+1

mx
ij . (14)

A. Higher order parities

The encoding and decoding protocol can be formulated

completely in terms of the stabilizers of the code, independent

of the exact mapping to the logical qubits. This includes

mappings in which some qubits hold the parity of more than

two qubits. Encoding higher-order parity qubits is not always

straightforward, but it has been shown [30] that, given enough

ancillary qubits, one can always find a valid layout with local

constraints on four or less qubits which includes the desired

parity qubits (see Fig. 7 for an example for all possible three-

body parities on four qubits). Therefore, it is also possible

to use the same constant-depth circuits for code layouts with

arbitrarily high-order parity. Note that, while the quantum

circuit still has constant depth, the classical complexity to

calculate the corrections can then scale polynomial with the

number of logical qubits.

023 123 3

01 1 2 23

0 012 013

Fig. 7: Example of constraint layout to encode three-body

interactions. The parity qubits (2, 3) and (0, 1) are ancillary

and only required to obtain an encoding of all three-body terms

using local constraints. With the data qubits (bold) as a basis,

all parity qubits can be added or removed from the code in

constant depth.

B. Partial Encoding and Decoding

Instead of encoding the full set of parity qubits in the

beginning of the algorithm and decoding all of them in the

end, one can also use the encoding and decoding strategies

more flexibly to adjust the set of parity qubits to the algorithm

on-the-fly by decoding only some of them and potentially

encoding different ones whenever needed. One particularly in-

teresting scenario is the removal of all parity qubits contained

in a logical Pauli-X operator [see Eq. (7)] in order to directly

perform non-diagonal operations on the corresponding logical

qubit.

In general, any set of physical qubits can be removed from

the code as long as the qubits which remain in the code

form a valid readout basis spanning the full logical space,

i.e., it is possible to deduct the state of every logical qubit

from the remaining physical qubits. It is in principle even

possible to remove data qubits from the code, while preserving

the corresponding logical qubit information indirectly through

other parity qubits. For example, qubits (0) and (0, 1) are

sufficient to determine the state of logical qubit 1, whose

computational basis states are described by the parity of the
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two physical qubits. Whenever there is a constraint with which

a qubit can be decoded, it is valid to do so, even if the decoded

qubit was a data qubit. This can be easily verified as one can

use the same constraint to encode the qubit again, so no logical

information is lost.

C. Implications for Fault Tolerance

Every decoding process produces a code with potentially

less fault tolerance, as the code distance (typically the smallest

number of physical qubits which share a logical index) can

decrease when reducing the number of physical qubits. Note

that in many cases, the code distance can remain the same,

for example when removing a parity qubit which does not

include any of the logical indices which determine the distance

(i.e., which have the smallest number of occurrences in parity

qubits). In addition, replacing the CNOT-based protocols with

measurements and classical corrections can lead to higher error

rates due to faulty measurements, depending on the physical

properties of the chosen platform. During the encoding pro-

cess, such measurement errors can be mitigated by performing

each constraint measurement several times and using a clas-

sical error syndrome decoder to identify measurement errors

and determine the correct action.

IV. APPLICATIONS

In the following we present a selection of applica-

tions of universal parity quantum computing for which the

measurement-based approach can be used to improve the

circuit depth.

A. Measurement-based parity QAOA

The Quantum Approximate Optimization Algorithm

(QAOA) [23] is a hybrid quantum-classical algorithm to solve

combinatorial optimization problems. The core idea of the

QAOA is to prepare a solution candidate state

|ψ(β,γ)〉 =
p∏

j=1

e−iβjHXe−iγjHP |+〉⊗n
, (15)

where HX , diagonal in the X-basis, represents a so-called

mixer Hamiltonian and HP , diagonal in the Z-basis, cor-

responds to the problem Hamiltonian of the optimization

problem treated. The generic forms of these Hamiltonians are

HX =
∑
i

Xi (16)

and

HP =
∑
i

JiZi +
∑
i<j

JijZiZj +
∑

i<j<k

JijkZiZjZk + . . . ,

(17)

respectively. The integer p refers to the number of QAOA

layers and the 2p classical parameters β = (β1, . . . , βp) and

γ = (γ1, . . . , γp) are optimized in a quantum-classical feed-

back loop in order to minimize the energy expectation value

〈HP 〉 = 〈ψ|HP |ψ〉. In standard approaches to implement the

QAOA, the number, order and non-locality of interactions pose

a limit to the parallelizability of the corresponding quantum

circuit as many operations need to be decomposed into native

gates of the underlying architectures. Also a mapping to

quadratic unconstrained binary optimization (QUBO) prob-

lems [31] cannot overcome these issues. The parity architec-

ture, however, can be used to map all many-body interactions

of the problem Hamiltonian HP onto local operations.

In earlier works [24], only the problem Hamiltonian

was mapped to the parity code and implemented as

H̃P =
∑

k JLk
ZLk

, while the mixer Hamiltonian was replaced

by a mixer Hamiltonian with single-qubit X-operators on all

physical qubits. In such an implementation, satisfaction of the

parity constraints is not guaranteed and thus has to be enforced

via an additional energy penalty. This increase of dimension

of the reachable Hilbert space is avoided by also mapping the

mixing Hamiltonian such that the whole evolution is restricted

to the code space [26], [32]. However, the resulting mixing

operators can become expensive to implement [19], [27] within

the parity code, leading to a circuit depth scaling linearly with

the system size.

In the following, we apply the measurement-based encoding

and decoding techniques to perform the mixing operators on

the logical qubits in the decoded state, using H̃X =
∑

k X(k),

while the parity-mapped problem Hamiltonian is implemented

on the physical qubits in the encoded state. We show how this

leads to a constant QAOA circuit depth without the need for

parity constraints in the problem Hamiltonian. Note that, if all

data qubits are present in the parity code, this corresponds to

a fully mapped implementation of the original problem and

thus the energy landscape of 〈HP 〉 as a function of β and γ
is equivalent to the energy landscape of the logical problem

and therefore preserves useful properties like, for example,

parameter concentration [33]–[35].

1) LHZ-scheme with data qubits: In the n-qubit LHZ-

scheme providing all two-qubit interactions as well as the

corresponding data qubits (i.e., K = n(n+ 1)/2 physical

qubits in total), the procedure to perform QAOA using the

measurement-based encoding approach is straight-forward and

executed by the following procedure:

1) Prepare the data qubits in the state |+〉⊗n
.

2) for 1 ≤ j ≤ p do
a) Perform the measurement-based encoding sequence to

build up the whole LHZ triangle.

b) Apply the mapped problem Hamiltonian unitary

ŨP = e−iγjH̃P =
K∏

k=1

exp (−iγjJLk
ZLk

) (18)

on the corresponding physical qubits.

c) Perform the measurement-based decoding sequence to

collapse all quantum information to the data qubits,

which after that represent the logical qubits.

d) Apply the mixing unitary

ŨX = e−iβjH̃X =

n∏
k=1

exp
(−iβjX(k)

)
(19)

on the data qubits.
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Circuit constituent
Required circuit depth

Measure CNOT Single qubit

Encoding 1 4 1

UP 0 0 1

Decoding 1 0 1

UX 0 0 1

total 2 4 4

TABLE I: Depth required for the constituents of a single

QAOA layer. Note that duration of single qubit gates is

negligible compare to the duration of measurements or 2-qubit

gates.

e) Reassign j ← j + 1.

3) Evaluate the energy expectation value 〈HP 〉 and update

the classical parameters.

4) If a stopping criterion is reached, terminate. Otherwise

go to step 1.

2) General parity layouts: The same approach can be ap-

plied to any other parity code as long as there is a data qubit for

every logical qubit. For more general optimization problems,

not all single-body terms must be present in the problem

Hamiltonian and thus not all data qubits are necessarily part

of the encoding. In that case, another valid readout basis

{Li| i = 1, . . . , n} of the existing parity and data qubits can be

chosen which defines the logical space. As the choice of the

driver Hamiltonian in QAOA has a certain degree of freedom,

it is not necessary to realize exactly the logical Hamiltonian

H̃X =
∑n

i=1 X̃i. Instead, decoding to the chosen readout basis

and then applying the Hamiltonian H̃ ′
X =

∑n
i=1 XLi acting on

all physical qubits of the readout basis is also a valid choice.

In the logical system, this corresponds to replacing at least

some of the operators X̃i by products
∏

j X̃j . Equivalently,

this can be understood as a relabelling of the logical qubits in

terms of a basis change to the readout basis. Note that this can

change some properties of the problem graph and for example

result in different parameters β and γ. For some problems (for

example problems with known parameter concentration [33]–

[35]) it can thus be beneficial to instead simply add the missing

data qubits to the code.

Regardless of the system size, the depth for measurement-

based parity QAOA is composed from 2 measurement steps,

4 CNOT steps, and 4 steps containing only single-qubit

operations, as given in Table I.

B. Quantum Fourier Transform with linear qubit overhead

In Ref. [19] it has been shown how the quantum Fourier

transform (QFT) on n qubits can be implemented in the parity

architecture using n(n+ 1)/2 qubits and a circuit depth of

8n− 9. Here we demonstrate a cost reduction by employing

our new approach to dynamically encode and decode parity

qubits tailored to specific parts of the QFT circuit, requiring

a physical qubit layout corresponding to a square lattice of

width 3 and length n (i.e., a linear amount of qubits, see Fig. 8)
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Fig. 8: Basic block of the QFT with measurement-based en-

coding and decoding of parity qubits. The first part (a) consists

of two Hadamard gates and a CP gate on the unencoded

physical qubits. In the second step (b), parity qubits are added

to the code in two lines around the data qubits to enable

interactions of logical qubits i and i+ 1 with all other logical

qubits k > i+ 1. The corresponding CP gates are performed

on the encoded state (c), before decoding all parity qubits

again (d). This basic block is repeated �(n−2)/2� times. The

last two logical gates of the QFT algorithm can be performed

as physical gates on the unencoded qubits. Qubits that are

subject to a quantum operation are highlighted with a bold

outline.

with an ancilla qubit in the center of every square. The middle

line of qubits represents the logical qubits (as data qubits of

the parity code), while the two outer lines are used to add

parity qubits to implement the necessary interactions. The QFT

requires implementing Hadamard gates (H) and controlled

phase (CP) gates defined as CP(φ) = diag(1, 1, 1, eiφ) and is

given by

UQFT =
n∏

i=1

⎡
⎣H(i)

n∏
j=i+1

CPi,j(2
i−jπ)

⎤
⎦ . (20)

We perform all Hadamard gates and the CP gates between

neighboring qubits as physical gates on the data qubits, all

remaining CP gates are implemented in an encoded state using

physical single-body operations on the respective parity and

data qubits (see Ref. [18] for the exact implementation). We

apply the following block of instructions �(n− 2)/2� times,

starting at i = 1:

(a) Perform the gates H(i), CP(i),(i+1)(π/2) and H(i+1) as

physical gates on the corresponding data qubits.
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(b) Encode parity qubits (i, k) and (i+ 1, l) for all k, l
with i < k ≤ n and i+ 1 < l ≤ n using measurement of

plaquette constraints as shown in Fig. 8b.

(c) Perform the logical gates C̃Pi,k(2
i−kπ) and

C̃Pi+1,k(2
i+1−kπ) for all k with i+ 1 < k ≤ n.

(d) Decode by measuring all parity qubits.

(e) Reassign i← i+ 2.

For even n, the last two gates of the QFT circuit are applied

physically on the data qubits in the end. Each block can be

implemented in the depth of one CP gate and four CNOT

gates, or equivalently, six CNOT gates. In addition, each

block requires two steps of simultaneous measurements and

classical post-processing. For even n, this results in total

depth of 3n− 4 CNOT steps and n− 2 measurement steps

(we omit steps with only single-qubit gates). For odd n, the

circuit consists of 3n− 3 CNOT steps and n− 1 measurement

steps. Given the depth of 10n− 13 for the conventional

implementation [36] on a square lattice, measurement-based

encoding and decoding can significantly speed up the QFT

whenever fast projective measurements are available.

C. Preparation of graph states

As suggested in Ref. [19], the parity code can be used to

create arbitrary graph states [37]–[39] of n qubits in a circuit

depth linear in n. With the measurement-based approach to

encoding and decoding, this depth reduces to a constant:

State preparation with single-qubit gates, encoding in four

steps of CNOT gates and one measurement and corrections

step, logical CZ gates in one step of single-qubit gates,

and decoding with one measurement and correction step. To

compare the resources to those of conventional approaches of

graph state generation [40], one must take into account that the

number of required constraint measurements in our approach

scales linearly with the connectivity of the desired graph state.

Although the initial encoded state in the parity code is not

a cluster or graph state, the encoding procedure has some

similarities with cluster state preparation [37] and the exact

relationship between this implementation and the generation

of graph states via cluster states remains to be investigated.

D. Arbitrary quantum algorithms

The measurement-based protocol presented in this work also

offers the potential for depth reductions of general quantum

circuits. It is in particular promising for quantum circuits

which can be grouped into blocks whose unitary is diagonal in

either the X-, Y - or Z-basis (or any basis which transforms to

the computational basis only by single-qubit operations). For

example, every operator of the form

U =
∏
k

eiαk

∏
j σj , (21)

containing only one kind of Pauli operators σj ∈ {Xj , Yj , Zj}
but arbitrarily high orders of interaction, can be implemented

in constant circuit depth (given that enough qubits are available

to encode the required connectivity).The number of additional

qubits always scales with the number of interactions to be

implemented. In the best case, every interaction term requires

two additional qubits (one measurement ancilla and one parity

qubit). In some cases, however, additional ancillary parity

qubits may need to be added in order to obtain a layout

with local constraints. For blocks with Y or X interactions,

the encoding needs to be performed in the corresponding

basis, or equivalently, the appropriate basis change needs to be

applied before and after the block. This makes the parity code

interesting in the context of synthesizing arbitrary quantum

gates and algorithms from Ising-type interactions and single-

body gates, as for example in Ref. [41].

Another field of application is the implementation of CZ

circuits, which have constant depth in our approach. That is a

significant improvement compared to the lowest known upper

bound for implementations without the parity code, which

is logarithmic in the number of qubits [42]. However, note

that the gain in circuit depth in our approach is related to an

increase in circuit size, while the procedure in Ref. [42] does

not require any ancilla qubits.

V. CONCLUSION

In this work, we have presented a novel way to en-

code and decode information in the parity encoding using a

measurement-based technique, similar to the concept of lattice

surgery in the surface code [14]. The method can be used

to arbitrarily change the shape of the code while keeping

information on the logical qubits untouched. This allows for

a flexible use of the parity code for a variety of quantum al-

gorithms by dynamically adapting the code to the algorithmic

requirements in a constant depth independent of the system

size. In particular, we describe a constant-depth QAOA proto-

col in the parity architecture which does not require any energy

penalization of parity constraints. A single QAOA layer for

optimization problems on graphs and hypergraphs of arbitrary

connectivity now runs in 10 time steps (containing single-qubit

gates, two-qubit gates and measurements). This opens up a

yet unexplored possibility to efficiently solve combinatorial

optimization problems on qubit platforms with limited con-

nectivity but efficient qubit measurement. The depth reduction

of the quantum Fourier transform to at most 4n− 4 steps

(measurements and CNOT gates) further suggests the potential

for more, unexplored advantages of the parity code in quantum

computing. Variational quantum algorithms are particularly

interesting candidates for this, a deeper investigation into more

general variational algorithms will be the scope of future work.

While the parity code is not a full quantum error correction

code, and deformations to small layouts further reduce the

robustness to noise, we stress that the possibility to partially

correct bit-flip errors via stabilizer measurements may still

be harnessed in combinations of this setup with other error

correction codes to reach full fault-tolerance.
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