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Abstract—Validation of program invariants (a.k.a. correctness
witnesses) is an established procedure in software verification.
There are steady advances in verification of more and more
complex software systems, but coming up with good loop invariants
remains the central task of many verifiers. While it often requires
large amounts of computation to construct safe and inductive
invariants, they are more easy to automatically validate. We
propose LIV, a new tool for loop-invariant validation, which
makes it more practical to check if the invariant produced
by a verifier is sufficient to establish an inductive safety proof.
The main idea is to apply divide-and-conquer on the program
level: We split the program into smaller, loop-free programs
(a.k.a. straight-line programs) that form simpler verification tasks.
Because the verification conditions are not encoded in logic syntax
(such as SMT), but as programs in the language of the original
program, any off-the-shelf verifier can be used to verify the
generated straight-line programs. In case the validation fails,
useful information can be extracted about which part of the proof
failed (which straight-line programs are wrong). We show that
our approach works by evaluating it on a suitable benchmark.
Supplementary website: https://www.sosy-lab.org/research/liv/

I. INTRODUCTION

Constructing and validating program invariants is the main

task of many verification approaches. Since invariants can

be proposed by imprecise approaches, it is imperative to

validate whether each candidate invariant is indeed an inductive

and safe program invariant. Verification witnesses have been

proposed as an exchange format for program invariants [1],

but there is a shortage of validators of correctness witnesses

in software verification. It is extremely important to not only

confirm invariants that can be used for the proof of correctness,

but also to reliably reject invariants that are not helpful for

constructing the correctness proof (they might be not inductive

or not implying the safety property). Recently, an approach

was proposed to split the verification task (C program and

specification) to a set of C programs (with assertions inlined)

such that the original program is correct if all generated

C programs are correct [2]. We adopt and implement this

approach in LIV, and explore its potential for the use case of

validation of correctness witnesses.

Contributions. We contribute the following results:

• the open-source tool LIV, which is a witness validator

that implements the approach of generating straight-line

programs in the language of the original program,

• using off-the-shelf verifiers to establish correctness, and

• an evaluation on programs from the SV-Benchmarks

repository [3], demonstrating the effectiveness of LIV.

II. APPROACH

For ease of presentation, we consider a basic programming

language where a program is a sequence of statements (which

can consist of other statements). Let Σ denote the set of all

possible statements, then the set of all programs is denoted

by Σ∗. For the empty program we will use the symbol ε.
Each statement can either be an atomic statement (denoted

by a), a compound statement (denoted by S), or a special

statement. Special statements are statements that affect the

control flow, such as the break and continue statements which

are frequently used in loops and the goto statement1. Iteration

statements like while C do B and branching statements

like if C then S else T are compound statements.

We support the iteration statements to be annotated by a

loop invariant γ, and write whileγ C do B. If no invariant

is annotated, we will implicitly assume the weakest possible

invariant, that is, true. Location invariants can be added to

every statement in the same manner, i.e., Sγ is a statement

with a location invariant that holds whenever that statement

is reached and before it is executed. A straight-line program
is a program that does not contain any loop statement (and

therefore also no loop-invariant annotations).

A Hoare triple consists of a precondition {P} from the

set Pred of predicates, a program from Σ∗, and a post-

condition {Q} from Pred . A straight-line Hoare triple is a

Hoare triple where the program does not contain any iteration

statements.

Example. The program from Fig. 1a has the following

statement structure:

s0 (if C1 (whileγ C2 do B) else s1) s2

From the structure of the program, we can construct the

following four straight-line Hoare triples that correspond to

the straight-line programs shown in Figs. 1b, 1c, 1d, and 1e:

• {P}s0[C1]{γ}
• {γ ∧ C2}B{γ}
• {γ ∧ ¬C2}s2{Q}
• {P}[!C1]s1s2{Q}

The brackets around an expression, for example in [C1],
indicate an assume statement. The predicates P and Q are

both true in the example.

1We will not focus on goto statements in this paper, but plan to add support
for this, which should be straight-forward.
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1 int x = nondet();
2 if (x>=0) {
3 while (x>0) { // loop invariant: x>=0
4 x--;
5 }
6 } else x++;
7 y = x;

(a) Original program with a loop invariant

1 assume(1);
2 int x = nondet();
3 assume(x>=0);
4 assert(x>=0);

(b) SLP 1: loop invariant
holds after initialization

1 int x = nondet();
2 assume(x>=0);
3 assume(x>0);
4 x--;
5 assert(x>=0);

(c) SLP 2: loop
invariant is inductive

1 int x = nondet();
2 int y = nondet();
3 assume(x>=0);
4 assume(x<=0);
5 y = x;
6 assert(1);

(d) SLP 3: continuing after
the loop

1 int x = nondet();
2 int y = nondet();
3 assume(1);
4 assume(x<0);
5 x++;
6 y = x;
7 assert(1);

(e) SLP 4: covering the else
branch

Fig. 1: Example for splitting an original program into straight-

line programs (SLPs) using a loop invariant; initializations in

SLPs before the first assume are to produce valid C programs

Soundness. In general it is possible to prove the soundness of

splitting procedures like the one we present here, which was

done for VST-A [2], the main inspiration for LIV.

Our splitting procedure is implemented on top of the abstract

syntax tree, and kept very simple on purpose. In addition,

soundness bugs in our implementation can be expected to be

discovered when applying LIV to the extensive benchmark set

from the Competition of Software Verification, which covers

many corner cases of the C language.

A. Tool Architecture

LIV is implemented in Python 3, using a modified version

of pycparser-ext2 as a frontend for parsing C programs. The

splitting of the input program is done by traversing the

abstract syntax tree of the input program. In addition, global

variable and function definitions are collected and added

to all generated straight-line programs. Verification of the

generated straight-line programs is delegated to a backend

verifier using COVERITEAM [4]. The choice of the backend

verifier can be configured (from a set of more than 45 verifiers

for C programs [5]).

III. EVALUATION

Our evaluation addresses the following research questions:

RQ 1 Can an (efficient) validator be constructed via splitting

the original program into straight-line programs?

RQ 2 Can the validator give additional feedback to the user?

RQ 3 To which extent are the invariants provided by automatic

software verifiers via correctness witnesses already enough

to establish a complete, inductive proof?

2https://github.com/inducer/pycparserext

TABLE I: Results of running LIV on the benchmark set, using

three off-the-shelf verifiers as backend

Verifier
Backend

Correct (18 total) Wrong (3 total)
Confirmed Rejected Confirmed Rejected

CBMC 18 0 0 3
CPACHECKER 18 0 0 3
CPA-LIA 17 1 1 2

A. Experiment Setup

We conduct two experiments to show the usefulness of LIV,

the first targeting RQ1 and RQ2, the second targeting RQ3.

For both experiments, we will look at the subset of verification

tasks from the SV-Benchmarks repository3 called loop-zilu,
consisting of 22 C programs. For the first experiment, we

will take invariants for the benchmark tasks from the ACSL-

Benchmarks repository4 where inductive loop invariants that

should be sufficient to prove the assertion of the programs are

annotated to the programs in various formats. For the second

experiment, we use correctness witnesses that were produced

by verifiers participating in SV-COMP 2022 [6].

We run our experiments on compute nodes with an Intel

Xeon E3-1230 CPU. Each experimental run uses all 8 available

processing units and is limited to use 15GB of memory and

900 s of CPU time.

We configure LIV to run with different off-the-shelf verifiers

as backend. For the first experiment we limit ourselves to

CBMC [7] and CPACHECKER [8]. In addition, we use a special

configuration of CPACHECKER which we refer to as CPA-LIA.

This configuration uses linear integer arithmetic (LIA) as

internal encoding, which is imprecise by design and allows

us to observe cases in which the internal encoding makes a

difference for validation.

For the second experiment, we only use CBMC as backend.

Since the generated programs do not contain loops, a mature,

bounded model checker like CBMC will allow us to quickly

check the generated verification tasks while supporting a large

subset of the C language.

In order to compare this to state-of-the art correctness

validators, the second experiment also contains a comparison

with CPACHECKER’s correctness-witness validation, which is

based on incremental k-induction, and which we refer to

as CPA-KIND. Since the approach of LIV is more similar to

1-induction, we also compare with a modified version of

CPAchecker’s k-induction, where the induction bound k is

fixed to 1, hence we refer to it as CPA-1IND.

B. Evaluation Results

RQ 1. Table I shows the results for the first experiment. For our

benchmark set, all correct witnesses are confirmed by the off-

the-shelf verifiers CBMC and CPACHECKER. These also correctly

reject three witnesses for which the invariant is actually not

sufficient. One such example of an inductive invariant that is not

3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4https://gitlab.com/sosy-lab/research/data/acsl-benchmarks
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1 int main() {
2 int k = __VERIFIER_nondet_int();
3 int j = __VERIFIER_nondet_int();
4 int n = __VERIFIER_nondet_int();
5

6 if (!(n>=1 && k>=n && j==0)) return 0;
7 //@ loop invariant j <= n && n <= k + j;
8 while (j<=n-1) {
9 j++;
10 k--;
11 }
12 //@ assert k >= 0;
13 __VERIFIER_assert(k>=0);
14 return 0;
15 }

(a) benchmark04_conjunctive.c: Inductive but unsafe invariant (invariant
holds after initialization, is inductive, but does not imply the assertion)

1 int main() {
2 int i = __VERIFIER_nondet_int();
3 int c = __VERIFIER_nondet_int();
4 if (!(c==0 && i==0)) return 0;
5 //@ loop invariant 2 * c == (i-1) * i

↪→ && 0 <= i && i <= 100;
6 while (i<100) {
7 c = c+i;
8 i = i+1;
9 if (i<=0) break;
10 }
11 //@ assert c >= 0;
12 __VERIFIER_assert(c>=0);
13 return 0;
14 }

(b) benchmark10_conjunctive.c: Invariant not inductive (integer
variable c can have negative values due to overflow)

Fig. 2: Example for benchmarks with insufficient invariants
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(b) Comparison with CPA-1IND

Fig. 3: Scatter plots comparing LIV with CPACHECKER-based correctness-witness validation; all results are shown, independent of

the verification result

sufficient to prove the assertion is shown in Fig. 2a. CPA-LIA

misses rejecting one incorrect witness and instead rejects one

witness that is actually correct. The incorrect invariant that is

accepted by CPA-LIA is shown in Fig. 2b.

Regarding efficiency, Fig. 3a shows that the execution of

LIV is also efficient, i.e., it finishes after a few seconds in

the majority of cases and never runs into a timeout for the

given benchmark set. This is also mostly true for CPA-1IND

(Fig. 3b); there are only a few outliers and timeouts caused

by the employed SMT solver. The fact that CPA-1IND confirms

more witnesses than LIV is due to the fact that CPA-1IND unrolls

the loop body one additional time (to encode assertions inside

the loop body) before checking the assertion after the loop.

CPA-KIND completely unrolls the loops in several programs that

have a finite loop bound, which is why it confirms significantly

more witnesses.

In sum, RQ1 can be answered positively.

RQ 2. Initially we expected all the witnesses from the bench-

mark set to be confirmed. Surprisingly, upon inspection of the

witnesses that LIV rejected, we indeed confirmed that some

invariants are not strong enough to establish the specified safety

property. We show two such examples in Fig. 2.

Upon failure, existing validators would at most output

information about whether a specific invariant was confirmed

or not. LIV can give more fine-grained reports, as we can

distinguish between whether the invariant holds after the

initialization, whether it is inductive, or whether the invariant

does not ensure the safety property (assertion after the loop).

The two programs in Figs. 2a and 2b are examples in which

LIV tells us why the proof of correctness cannot be established.

In sum, LIV’s feedback is for each proof step by construction.

RQ 3. The results for the second experiment are shown in

Table II. We show only the results for verifiers that created non-

trivial correctness witnesses in SV-COMP 2022, i.e., witnesses

that actually contain at least one syntactically valid invariant.

We can observe that a significant fraction of the invariants

reported by the verifiers are actually sufficient for an inductive

proof by LIV. Upon closer inspection of the output of the

two CPACHECKER-based variants, we can observe that it often

happens that they ignore the provided invariants, leading

to confirmed results even if the provided invariants are not

sufficient. Also, neither of the CPACHECKER-based approaches

rejected any witness due to a wrong invariant.

For RQ3, while there are significantly many witnesses that

help proving correctness, we also report that there is still room

for improvement in the invariants provided from the verifiers.

IV. RELATED WORK

Witness Validation. There are only few approaches for validat-

ing correctness witnesses [9, 10]. The closest to our approach

is METAVAL [9]. METAVAL encodes additional proof goals for

the invariants provided via the witness into a C program, but

does not split programs up into multiple, simple sub-programs.

The C program is constructed as automaton product of the
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TABLE II: Results for LIV and CPACHECKER-based witness validation on the SV-COMP witnesses from each verifier

Verifier
# Tasks LIV CPA-KIND CPA-1IND

total non-trivial confirmed rejected unknown error confirmed unknown confirmed unknown

2LS 13 12 6 7 0 0 11 2 7 6
CBMC 7 7 1 5 1 0 7 0 3 4
CVT-ALGOSEL 16 11 2 13 1 0 9 7 5 11
CVT-PARPORT 19 5 4 15 0 0 14 5 9 10
CPACHECKER 21 6 5 14 0 2 15 6 10 11
GRAVES 22 9 5 14 2 1 12 10 10 12
PESCO 21 16 11 5 1 4 15 6 15 6
UAUTOMIZER 22 22 9 12 1 0 11 11 7 15
UKOJAK 21 21 10 10 1 0 10 11 7 14
UTAIPAN 22 22 6 16 0 0 11 11 7 15

witness automaton and the CFA of the original program, and

as such it is not immediately clear whether this construction

is sound, and less likely to be faster to validate. In case the

validation fails, it is not clear to the user where exactly the

proof goes wrong, and loops are still present.

Verification-Condition Generation. Our design can also be

seen as a variation of deductive verification, where verification

conditions are generated from the (user-)provided invariants,

which are then typically handed off to a backend solver. For

example, Dafny [11] translates to Boogie [12, 13] as an inter-

mediate representation. Other examples include VERIFAST [14]

and FRAMA-C [15]. The automatic verifier KORN [16] translates

to constrained Horn clauses. While for existing deductive and

automatic verifiers, the verification conditions usually use a very

specific representation that is bound to the particular backend

and cannot easily be reused, LIV uses the original programming

language to encode the verification conditions and off-the-shelf

verifiers as backend to solve them. Our approach is closely

motivated by VST-A [2, 17], which is an annotation verifier

for C programs. The main difference is that our transformation

is purely AST-based, while for VST-A the actual splitting is

defined over the CFA of the program. In general, algorithms

for verification-condition generation are tool-specific and not

described in detail in literature, with few exceptions [18].

V. CONCLUSION

There is a demand for invariant-validation tools in order to

ensure the correctness of the results of verification tools. LIV is

a new validator for correctness witnesses. The unique feature of

this tool is that it reads the invariants from correctness witnesses,

and reduces the validation problem to the verification of a set of

straight-line programs. This enables the application of arbitrary

off-the-shelf verification tools for C programs, including

bounded verifiers, for establishing a proof of correctness.
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