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Abstract—Software verification is challenging, and auxiliary
program invariants are used to improve the effectiveness of verifi-
cation approaches. For instance, the k-induction implementation in
CPACHECKER, an award-winning framework for program analysis,
uses invariants produced by a configurable data-flow analysis to
strengthen induction hypotheses. This invariant generator, CPA-DF,
uses arithmetic expressions over intervals as its abstract domain
and is able to prove some safe verification tasks alone. After
extensively evaluating CPA-DF on SV-Benchmarks, the largest
publicly available suite of C safety-verification tasks, we discover
that its potential as a stand-alone analysis or a sub-analysis in
a parallel portfolio for combined verification approaches has
been significantly underestimated: (1) As a stand-alone analysis,
CPA-DF finds almost as many proofs as the plain k-induction
implementation without auxiliary invariants. (2) As a sub-analysis
running in parallel to the plain k-induction implementation,
CPA-DF boosts the portfolio verifier to solve a comparable amount
of tasks as the heavily-optimized k-induction implementation with
invariant injection. Our detailed analysis reveals that dynamic
precision adjustment is crucial to the efficiency and effectiveness
of CPA-DF. To generalize our results beyond CPACHECKER, we use
COVERITEAM, a platform for cooperative verification, to compose
three portfolio verifiers that execute CPA-DF and three other
software verifiers in parallel, respectively. Surprisingly, running
CPA-DF merely in parallel to these state-of-the-art tools further
boosts the number of correct results up to more than 20 %.

Demonstration video: https://youtu.be/l7UG-vhTL_4

I. INTRODUCTION

As the technology evolves, software systems are becoming

increasingly complicated. Assuring the safety of these systems

has always been a crucial research field, and numerous

verification tools and algorithms have been proposed. To

keep up with the development pace of software systems,

cooperative verification [1] aims at combining the strengths of

different tools to form a more powerful verifier. One prominent

example is to augment k-induction with an invariant generator.

Auxiliary invariants prune out unreachable program states and

can strengthen the induction hypotheses, greatly improving the

proof-finding capability of k-induction [2, 3, 4].

CPACHECKER, an award-winning software analyzer, is one

of the many tools implementing the cooperative k-induction

method [3]. It uses a configurable data-flow analysis CPA-DF

based on expressions over intervals to generate invariants. While

profiling the performance of k-induction, we observed that

CPA-DF is able to construct a proof, an inductive invariant that

implies the safety property, on its own for many verification

tasks. A question naturally arose: How much of the performance
boost by combining k-induction with CPA-DF actually comes

from the parallel execution, but not from the invariant injection?
Surprisingly, we found out that by running the two analyses

purely in parallel, we can solve almost as many tasks as

running the two cooperatively (with invariant injection). In

fact, nearly 90 % of the boosting effect of this cooperative

approach in CPACHECKER is achieved by the parallel execution.

That is, without the need of a more complicated mechanism to

communicate invariants, a simple portfolio is already very

effective. This motivates us to further investigate (1) the

capability of CPA-DF and (2) whether this boosting effect

can be generalized to other tools. The main engineering

challenge was to decouple the integrated invariant-generation

component CPA-DF from k-induction and use it modularly with

other components or tools. Thanks to the high flexibility and

adaptivity of the CPA framework [5] and COVERITEAM [6], we

were able to overcome the challenge elegantly.

Use Cases. In this paper, we demonstrate two major use

cases of CPA-DF: (1) as a stand-alone analyzer and (2) as

a complementary performance booster in a portfolio-based

verifier. We envision that CPA-DF could be beneficial to both

verification-tool users and developers.

Novelty and Contributions. We discover a novel aspect of

the existing invariant-generation component of CPACHECKER

and decouple it into a stand-alone static analyzer CPA-DF.

The presented analyzer is highly configurable and can find

a comparable amount of proofs as plain k-induction. To

demonstrate the usability of the tool, we conducted a large-

scale evaluation on more than 9 000 verification tasks. We show

that in CPACHECKER, running CPA-DF as a parallel component

along with k-induction achieves a performance boost similar

to that of a complicated cooperative approach. This boosting

effect can also be observed by pairing CPA-DF with another

well-established tool as a portfolio-based verifier. The finding

implies that a parallel portfolio is a simple yet very effective

way to improve performance.

Tool Availability. We contribute the open-source data-flow anal-

ysis tool CPA-DF (see Section "Data-Availability Statement").

II. RELATED WORK

Our work is mainly related to data-flow analysis and

cooperative verification.

Data-Flow Analysis. Data-flow analysis computes the infor-

mation flow throughout the control-flow graph of a program.

It is used by compilers for tracking the reaching definitions
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and performing constant propagation [7]. Depending on the

used abstract domain, it can analyze different aspects of a

program. Domains of explicit values [7] and intervals [8, 9]

are commonly used to overapproximate numerical values of

program variables. Compared to model checking, data-flow

analysis is usually less precise but more efficient [10].

Cooperative Verification. Cooperative verification ap-

proaches [1] combine analyses with different strengths. Us-

ing auxiliary invariants to confine the state space of the

main analysis has been studied for many algorithms, in-

cluding k-induction [2, 3, 4], predicate abstraction [11, 12],

and IC3/PDR [13]. In contrast to cooperative approaches

demanding tight integration between analyses, verifiers can

also be combined easily as a sequential or parallel portfolio.

III. CONFIGURABLE INTERVAL ANALYSIS

Configurable Program Analysis with Precision. A config-
urable program analysis with dynamic precision adjustment
(CPA+) [14] specifies an abstract domain and a set of precisions

used to inspect a program. The precision is adjustable to make

the analysis either efficient but coarse or precise but time-

consuming. A CPA+ D together with an initial abstract state e0
and a precision π is given to the CPA+ algorithm (Algorithm 2.1

in the referred publication [14]) to construct a set of reachable

abstract states under precision π.

A CPA+ with Arithmetic Expressions over Intervals. CPA-DF

relies on a CPA+ using arithmetic expressions over intervals

as its abstract domain. This interval CPA+ I was first used as

a generator of auxiliary invariants to boost the performance

of k-induction [3]. The complete description of I can be

found in the technical report [15]. We briefly summarize

the major features of I: In the abstract domain of I, every

program variable is mapped to an arithmetic expression

over intervals, e.g., [l1, u1] ∪ [l2, u2], where li and ui are

numerical values representing the lower and upper bounds of

an interval, respectively. Compared to a plain interval analysis

that only tracks a single interval for each variable, I is able to

represent complex ranges of variables and hence more precise.

A precision π for I includes a set of important variables and a

Boolean flag toggling whether widening [9] is applied or not.

Two abstract states are merged only if their interval expressions

match over all important variables, and the merged state will

take the union of the interval expressions of the two abstract

states. The widening operation further relaxes the abstraction

of a merged state by computing the upper and lower bounds

and assigning a single interval to each variable.

Dynamic Precision Adjustment. CPA-DF combines the interval

CPA+ I with a precision-refinement strategy to achieve an

efficient and effective data-flow analysis. The procedure is

described in Alg. 1. It takes as input the interval CPA+ I
1, an

initial abstract state e0 mapping every variable to (−∞,∞)
with an initial precision π0 using the empty set of important

variables and widening, and a safety property P . The CPA+

1In the implementation, a composite CPA of I and other supportive CPAs
tracking program locations, pointers, and call stacks is used.

Algorithm 1 Interval analysis with precision refinement

Input: the interval CPA+ I, an initial abstract state e0, an

initial precision π0, and a safety property P
Output: safe if P holds for all reachable abstract states, or

unknown if the analysis is inconclusive

1: π := π0

2: while π �= nil do
3: R := CPA+(I, e0, π)
4: if ∀s ∈ R : s |= P then
5: return safe
6: π := RefinePrecision(I, π)
7: return unknown

algorithm [14] is invoked to compute a set R of abstract

reachable states under the given precision. If every abstract

state in R satisfies P , the program is safe. Otherwise, it means

that the analysis is not precise enough to determine the safety

of the program. In this situation, I dynamically adjusts the

precision by marking more variables as important via a heuristic

and disabling widening (at line 6). The algorithm continues

until either the program is proven to be safe under a refined

precision, or precision adjustment is no longer possible, namely,

all variables are marked as important, and widening is disabled.

In this case, subroutine RefinePrecision() returns the special

precision nil, and the analysis terminates as inconclusive.

IV. EXPERIMENTAL EVALUATION

We demonstrate the two major use cases of CPA-DF presented

in Sect. I by investigating the research questions below:

• RQ1: Can dynamic precision adjustment improve CPA-DF

as a stand-alone analysis for finding proofs?

• RQ2: Can a parallel portfolio of CPA-DF and the plain

k-induction implementation compete with the optimized

implementation with invariant injection in CPACHECKER?

• RQ3: Can CPA-DF complement other state-of-the-art

software verifiers as a sub-analysis in a parallel portfolio?

Benchmark Set. We used the verification tasks from the 2023

Intl. Competition on Software Verification (SV-COMP ’23).

We selected only verification tasks whose safety property

is the reachability of calls to an error function. The overall

benchmark set consists of a total of 9537 verification tasks,

where 3153 tasks contain a known specification violation, and

the remaining 6386 tasks are considered safe.

Experimental Setup. All experiments were conducted on

machines with a 3.4 GHz CPU (Intel Xeon E3-1230 v5,

8 processing units) and 33 GB of RAM. The operating

system was 64-bit Ubuntu 22.04, running Linux 5.15 and

OpenJDK 17.0.5. Each verification task was limited to 4 pro-

cessing units, 15min of CPU time, and 15GB of RAM.

We used BENCHEXEC [16] for reliable benchmarking, revision

43678 on branch data-flow-exp-configs of CPACHECKER

for the implementations of CPA-DF and k-induction, and

COVERITEAM [6] at commit 838e67ff to compose parallel

portfolios. As representative state-of-the-art tools, we chose

ESBMC [17], SYMBIOTIC [18], and UAUTOMIZER [19], whose

2051



0 1 4 8 16
500

1000

1500

w
id

en
in

g

#Important variables

#
P

ro
o
fs

disabled

enabled

Fig. 1: Numbers of proofs found by

CPA-DF with different precisions

TABLE I: Summary of the verification results on 9537 benchmark tasks

Framework CPACHECKER COVERITEAM

Configuration (tasks) DF KI KI || DF KI ���←−DF ESBMC E. || DF SYMBIOTIC S. || DF UAUTOMIZER U. || DF

Correct results 9537 1719 3258 4063 4164 5063 5201 3578 4419 3993 3983
proofs 6386 1719 1738 2572 2673 2962 3143 2046 2904 2930 2984
alarms 3153 0 1520 1491 1491 2101 2058 1532 1515 1063 999

Wrong proofs 0 0 0 15 17 17 0 0 0 0
Wrong alarms 0 2 2 2 10 10 1 1 0 0
Unknowns 6537 6277 5472 5356 4075 4309 5604 5117 5356 5554

Solved by DF 1719 - 877 956 - 359 - 859 - 1282

archives can be automatically downloaded and installed by

COVERITEAM from the SV-COMP ’23 artifacts. The time limit

of CPA-DF was set to 5min in parallel portfolios to allocate

enough time to the main analysis.

RQ1: Dynamic Precision Adjustment in CPA-DF. To study

the effect of dynamic precision adjustment on the proof-finding

capability of CPA-DF, we executed it with fixed precisions

limiting the number of important variables to {0, 1, 4, 8, 16}
and switched the widening operation on and off. Figure 1 shows

the number of safe tasks that CPA-DF proved under each static

precision, and the results of CPA-DF with dynamic precision

adjustment are shown in column “DF” of Table I.

In Fig. 1, we observe that more proofs were found as the

number of important variables increases. However, marking

too many variables as important is suboptimal because this will

prevent abstract states from being merged: The analysis will

need to process more abstract states and thus might not finish

timely (details below). For the widening operation, we also

observe a similar phenomenon: Without the overapproximation

performed by widening, the analysis found fewer proofs.

The scatter plot in Fig. 2 compares the CPU time CPA-DF

used to find a proof under the precisions enabling widening

and allowing 0 and 16 important variables, respectively. The

two precisions are denoted as (0, t) and (16, t). A data point

(x, y) in the plot means that there is a task solvable by CPA-DF

under both precisions, where precision (0, t) requires y seconds,

and precision (16, t) requires x seconds. In this comparison,

although CPA-DF with precision (0, t) found fewer proofs than

precision (16, t) (1137 vs. 1583), it often found proofs faster

for the tasks solvable with both precisions. To automatically

search for a suitable precision for a verification task, CPA-DF

dynamically refines the precision from the lowest one (0, t) to

the highest (N, f), where N is the number of all variables in

the program under analysis. In this way, CPA-DF is as precise

as necessary and as efficient as possible. Overall, CPA-DF with

dynamic precision adjustment solved more tasks than any other

static precision in our experiments (column “DF” of Table I).

Notably, CPA-DF proved the correctness of many tasks arising

from practical programs, including device drivers for Linux

(Category SoftwareSystems-LDV) and software product lines

(Category ReachSafety-ProductLines).

RQ2: Parallel Portfolio versus Invariant Injection. To

compare the effect on k-induction between running CPA-DF

as a sub-analysis in a parallel portfolio and as a generator

for invariant injection, we evaluated four different analyses

in CPACHECKER: the configurable interval analysis described in

this paper (DF), the plain k-induction (KI) without auxiliary

invariant, the parallel portfolio of KI and DF (KI || DF), and KI

with induction hypotheses strengthened by auxiliary invariants

injected from DF (KI ���←−DF) [3].

The experimental results are summarized in Table I. Ad-

ditionally, Fig. 3 shows a quantile plot comparing the proof-

finding capabilities of the assessed methods. A data point

(x, y) in the plot indicates that x safe tasks are correctly

proved by the respective algorithm within a CPU time bound

of y seconds each. Observe that by combining DF with KI,

either with communication (KI ���←−DF) or without (KI || DF),

we can achieve a significant improvement over running a single

analysis, meaning that the two analyses complement each other.

We also note that although KI || DF did not prove as many

tasks as KI ���←−DF, it avoided the 15 wrong proofs2 caused by

invariant injection. All of these wrong proofs came from tasks

in the ReachSafety-Hardware category, where KI ���←−DF also

found most additional proofs over KI || DF. In other words, the

extra proofs found by KI ���←−DF in this category might be due

to unsound overapproximation. If we exclude the tasks in this

category, KI || DF and KI ���←−DF found 2551 and 2554 proofs

in the remaining tasks, respectively. Our results show that a

parallel portfolio of CPA-DF and k-induction already brings

us most performance improvement that can be gained with

invariant injection, which involves a complicated information

exchange between analyses and is more error-prone.

RQ3: Boosting Program Verification with CPA-DF. To

examine the boosting effect of CPA-DF on other tools, we

paired ESBMC, SYMBIOTIC, and UAUTOMIZER from SV-COMP ’23

with CPA-DF via COVERITEAM to form three parallel portfolios,

respectively. Table I contains the results of running the verifiers

alone and in parallel with CPA-DF. A quantile plot comparing

the performance of these tool combinations on the safe

verification tasks is also shown in Fig. 4. At the expense

of discovering fewer violations because of the CPU time spent

by CPA-DF, all three verifiers were able to find more proofs

via having CPA-DF as a parallel component3. The extent of

improvement depends on how much the sets of solvable tasks

by the sub-analyses in the portfolio overlap. For example, there

2The issue (https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1070)
has been discoverd by the community and is under investigation.

3Even though UAUTOMIZER was able to solve more tasks than UAU-

TOMIZER || DF overall, if we apply the scoring scheme from SV-COMP,
which assigns two (resp. one) points to each correct proof (resp. alarm),
UAUTOMIZER || DF obtains a higher score than UAUTOMIZER.

2052



1 10 100 1000
1

10

100

1000

CPA-DF with precision (16, t)

C
P

A
-D

F
w

it
h

p
re

ci
si

o
n
(0
,t
)

Fig. 2: CPU-time scatter plot of

precisions (16, t) and (0, t)

0 500 1000 1500 2000 2500
1

10

100

1000

n-th fastest correct proof

C
P

U
ti

m
e

(s
)

DF

KI

KI || DF

KI ���←−DF

Fig. 3: Quantile plot comparing DF, KI,

and their combinations in CPACHECKER

0 500 1000 1500 2000 2500 3000
1

10

100

1000

n-th fastest correct proof

C
P

U
ti

m
e

(s
)

ESBMC

SYMBIOTIC

UAUTOMIZER

Fig. 4: Quantile plot showing the boosting

effect on others (hollow: w/o DF, solid: w/ DF)

were 1530 tasks solvable by both UAUTOMIZER and CPA-DF,

which already accounts for 89 % of the tasks the latter could

solve. Such a large overlap explains why UAUTOMIZER || DF

only had a marginal improvement over UAUTOMIZER. However,

1282 (43 %) proofs were found by CPA-DF in the portfolio,

meaning that CPA-DF was able to solve these tasks faster than

UAUTOMIZER. By contrast, SYMBIOTIC benefited the most from

running CPA-DF in parallel because the solvable sets of the two

sub-analyses are more disjoint (only 767 tasks were solvable

by both). From Fig. 4, we can also observe a more significant

improvement on SYMBIOTIC than the other two verifiers.

V. CONCLUSION

We presented CPA-DF, a data-flow analysis tool based on

interval expressions, originally developed as an auxiliary invari-

ant generator integrated with the k-induction implementation in

CPACHECKER. Decoupling CPA-DF as a stand-alone tool, we

are able to execute it modularly with other tools. In our

evaluation, we observed that executing CPA-DF in parallel to a

main analysis is not only helpful for k-induction in CPACHECKER,

which achieved a comparable performance as invariant injection,

but also enhances other state-of-the-art verifiers. We envision

verifier developers and users trying out CPA-DF to boost the

performance of their tools. For future work, we plan to export

invariants derived by CPA-DF in an exchangeable format to

broaden its application.

Data-Availability Statement. CPA-DF is implemented in

CPACHECKER, available on SVN (https://svn.sosy-lab.org/software/

cpachecker/branches/data-flow-exp-configs@43678, sources) and on

Zenodo [20] (executable, for reproduction). More information

and interactive tables for convenient browsing of the results

are available at https://www.sosy-lab.org/research/cpa-df/.
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