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Abstract—The MAP (Mean Average Precision) metric is one
of the most popular performance metrics in the field of In-
formation Retrieval Fault Localization (IRFL). However, there
are problematic implementations of this MAP metric used in
IRFL research. These implementations deviate from the text
book definitions of MAP, rendering the metric sensitive to the
truncation of retrieval results and inaccuracies and impurities of
the used datasets. The application of such a deviating metric can
lead to performance overestimation. This can pose a problem for
comparability, transferability, and validity of IRFL performance
results. In this paper, we discuss the definition and mathematical
properties of MAP and common deviations and pitfalls in
its implementation. We investigate and discuss the conditions
enabling such overestimation: the truncation of retrieval results
in combination with ground truths spanning multiple files and
improper handling of undefined AP results. We demonstrate the
overestimation effects using the Bench4BL benchmark and five
well known IRFL techniques. Our results indicate that a flawed
implementation of the MAP metric can lead to an overestimation
of the IRFL performance, in extreme cases by up to 70 %. We
argue for a strict adherence to the text book version of MAP
with the extension of undefined AP values to be set to 0 for all
IRFL experiments. We hope that this work will help to improve
comparability and transferability in IRFL research.

Index Terms—information retrieval, fault localization, MAP,
mean average precision

I. INTRODUCTION

Fault localization is a time-consuming and difficult part

of the debugging process [1], [2]. To support developers in

their work, researchers have proposed various approaches to

automate this task [3]. While some of these approaches are

test coverage based, others utilize execution traces, and again

others use historical data and textual bug reports, e.g., Infor-

mation Retrieval based Fault Localization (IRFL) approaches.

Typical IRFL approaches use bug reports as queries and

source code repositories as the corresponding document li-

braries, and they apply information retrieval (IR) techniques to

search within these libraries. The majority of IRFL approaches

provide search results as a list of source code files ordered by

suspiciousness [4]–[10]; only a few tools operate on method

level [11], [12]. The inherent insensitivity of IRFL approaches

to programming language, build system, and target platform

significantly ease integration into existing software projects

compared to test coverage based fault localization approaches.

These advantages and promising performance results led to

IRFL becoming an active research field.

Early research into IRFL applied various classic IR mod-

els and techniques, for example, Latent Dirichlet Allocation

(LDA) [13]–[15], Latent Semantic Indexing [16], and Vector

Space Models (VSM) [4], [17], [18]. VSM based approaches

dominated the field for some time [5], [8], [11], but deep

learning [6], [12], [19] and embedding based [20], [21] ap-

proaches have become more popular in recent years. Various

extensions have been proposed to increase performance of

IRFL by utilizing additional data sources and identifying and

extracting structured data in both textual bug reports and

source code. These include the utilization of historic bug

reports [4], stack traces in bug reports [5], code structure [9],

change histories [22], and combinations of them [8], [11].

To make the numerous approaches comparable, well estab-

lished retrieval performance metrics from the wider field of

IR are employed. The most popular metrics in IRFL are Mean

Average Precision (MAP), Mean Reciprocal Rank (MRR), and

TopN [23]. Researchers in the IR community have already

discussed the characteristics of these retrieval performance

metrics [24], [25] in depth, including discussions and evalua-

tions on statistics around these metrics [26]. While researchers

in the narrower field of IRFL have already investigated issues

related to datasets [23], [27], evaluation methodologies [28],

[29], and common assumptions in IRFL [30], [31], the lim-

itations of the employed metrics and practical considerations

have stayed untouched. To the best of our knowledge, there has

been no investigation of the metrics’ suitability for the field

of IRFL, and no investigation into the practical application of

these metrics in the context of IRFL research.

This paper focuses on the use of the popular MAP metric

and the underlying AP metric, and its application in IRFL

experiments. We discuss the origins and definitions of these

metrics, and identify issues and problems with the AP metric

in the field of IRFL, stemming from unclear definitions,

implementation errors, and lack of standard implementations.

These issues result in two versions of the AP metric that differ

slightly in their implementation that are now in widespread

use. We refer to these versions as APmb [24], [32] for the

textbook version, and APasrd [33] for the discussed deviation.

We show how truncated search results combined with ground
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truths spanning multiple items can impact the performance

scores based on these metrics. In particular, APasrd is sensitive

to such truncation, and overestimates the performance in such

cases. Further, we show how improper handling of undefined
AP scores and dataset inaccuracies and impurities can amplify

the overestimation effect.

We demonstrate these effects on the Bench4BL [34] dataset,

using five well known IRFL tools (BugLocator [4], BRTracer

[5], AmaLgam [8], BLIA [11], BLUiR [9]). The application

of APasrd on the Bench4BL dataset can spuriously inflate

performance scores by up to 70 % in extreme cases. We show

that the conditions that allow for such erroneous results due to

improper metric implementation are common in Bench4BL.

While we perform our demonstration using the Bench4BL

dataset, we expect these conditions to be met in the majority

of IRFL datasets/benchmarks [23].

This work aims to provide a clear picture of the AP and

MAP metrics and to highlight issues and pitfalls to help

researchers avoid them. Further, we want to raise awareness

in the IRFL research community and the wider IR research

community for the need of software libraries containing the de-

fault implementations of commonly used performance metrics,

similar to what sklearn.metrics1 provides for machine learning

researchers and practitioners.

The contributions of this work are: In Section II, we discuss

related work on IR study design, methodology, metrics, and

statistical evaluations. We discuss the origins and different

definitions of the MAP metric and its building blocks in

detail in Section III. This is followed by a detailed problem

statement in Section IV where we discuss the mathematical

properties of the AP and MAP metrics. We then demonstrate

the overestimation effects and the prevalence of the underlying

conditions in IRFL research. In Section V, we describe our ex-

perimental setup including the chosen benchmark and research

questions. In Section VI, we present our results, followed by

our conclusion in Section VII.

II. RELATED WORK

Various aspects of general IR experiments have been dis-

cussed in detail in the past, from study designs and method-

ologies, through suitability and applicability of performance

metrics, to investigations on the suitability, sensitivity, and

accuracy of various statistical tests:

Sutcliffe [35] explains study setups, experiment methodolo-

gies, evaluation strategies, performance measurement, model

comparison, and statistical evaluation for general IR experi-

ments in detail. The discussion on performance metrics for

single queries envelopes recall, precision, fallout, and deriva-

tive metrics as the E measure [36] and MZ metric [37]. Various

averaging strategies to create performance plots and single

value performance summaries are discussed, however, AP and

MAP are not mentioned.

Hull [38] discusses strategies for evaluating IR experiments

using precision and recall based metrics. He investigates the

1https://scikit-learn.org/stable/modules/classes.html#module-sklearn.
metrics

properties of P@k and R@k metrics and precision-recall

curves, and discusses the suitability of various statistical tests

for these measures.

Buckley and Voorhees [24] investigate the expressiveness of

common IR performance metrics for tool comparison. They

discuss error rates and effect sizes of P@k for various k,

Recall after 1000 documents R@1000, Precision at 0.5 Recall,

R-Precision, and AP performance metrics in conjunction with

study size. They identified AP as comparably stable metric for

retrieval performance comparison.

Cormack and Lyman [25] investigate statistical precision of

AP and MAP metrics under variability of test datasets. They

propose bootstrap methods to model corpus variability in order

to predict confidence intervals for AP and MAP.

Sanderson and Zobel [26] discuss the sensitivity and reli-

ability of various significance tests applied on performance

results from IR experiments. They discuss reliability of MAP
and P@10 under different conditions taking manual assessor

effort into account, and conclude that t-test shows lower error

rates as Wilcoxon and sign tests.

Smucker et al. [39] compare statistical significance tests

applied on MAP scores for statistical evaluation of IR ap-

proaches. They conclude that Student’s paired t-test, bootstrap,

or Fisher’s randomization tests perform well in IR experi-

ments, while the use of Wilcoxon signed rank test and sign

test suffer from false positives and false negatives and their

use in IR research should be discontinued.

Kishida [40] discusses properties of AP, including sensi-

tivity to changes in rankings and statistical reliability of the

metric.

Most aspects of IR experiments discussed in the works

above are valid and relevant in the more specialized field

of IRFL. While—to the best of our knowledge—there are

no separate investigations into IRFL specific study design,

methodologies, performance metrics, and statistical evalua-

tion, researchers have highlighted specific problems in IRFL

experiments, mostly focused on the datasets used in such

experiments. Tu et al. [28] highlight information leakage

issues in a number of IRFL datasets and experiments leading

to an overestimation of retrieval performance. Kochhar et
al. [30] investigate potential biases in datasets used for IRFL

experiments, showing that the inclusion of bug reports where

the reporter already localizes the fault causes a bias and

distorts retrieval performance results. Kim and Lee [23] point

out issues regarding representability and generalizability of

benchmarks used in IRFL. Hirsch and Hofer [27] survey

public bug localization benchmarks and identify issues in data

availability, data quality, and reproducibility. Kim and Lee [29]

show how the inclusion of test files can impact the validity

of IRFL studies. Wang et al. [31] show that the information

necessary for IRFL to work effective is often not contained

in bug reports. Further, they point out the lack of studies

involving actual developers evaluating the usefulness IRFL

approaches in practice.

Correctness of the utilized performance metrics’ implemen-

tations is a general assumption in all of the above publications.
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Our work differs from the above as it breaks with this

assumption and discusses problematic implementations of the

AP and MAP performance metric and investigates the resulting

effects of performance results and comparisons.

III. DEFINITIONS

In this section, we discuss the AP and MAP metrics’ origins

and definitions in greater detail.

The Documents set is the unordered set of all available items

in the document library. The Relevant set is an unordered set

of relevant items for a given query, with |Relevant| being its

size. The Retrieved set is an ordered subset of Documents,

with |Retrieved| being its size. It contains the retrieved items

for a given query in descending order of a similarity score,

provided by the investigated IR tool. While the Retrieved set

can list all items contained in the Documents set, in practice

this list may be truncated, therefore containing only a subset

of Documents. |Relevant∩Retrieved| is the number of relevant

items in the list of retrieved items for a given query.

Recall R in a ranking problem is the portion of relevant

documents that were retrieved. This is the number of relevant

documents within the retrieved documents (true positives),

divided by the number of relevant documents in total.

R =
|Relevant ∩ Retrieved|

|Relevant| (1)

Precision P in a ranking problem is the portion of retrieved

documents that are relevant. This is the number of relevant

documents within the retrieved documents (true positives),

divided by the number of retrieved documents (all positives).

P =
|Relevant ∩ Retrieved|

|Retrieved| (2)

Precision at k P@k is the precision at position k of the

retrieved set, meaning the precision when cutting off the

retrieved set at k.

rel(x) =

{
1 if document at position x is relevant

0 otherwise
(3)

P@k =

∑k
i=1 rel(i)

k
(4)

Average Precision (AP)’s definitions vary slightly in nota-

tion and basis of calculation along two different styles. We

discuss both definitions separately, and in detail, to show that

they produce the same results.

Manning et al. define AP as “the average of the precision
values obtained for the set of top k documents existing after
each relevant document” [32]. Given a set of relevant docu-

ments {d1, ..., dn} ⊆ Documents with n = |Relevant| and

rank(di) being the position of the relevant document in the

retrieved results, AP is calculated as follows:

APm =

∑|Relevant|
i=1 P@rank(di)
|Relevant| (5)

Manning et al. explicitly state that relevant documents that are

not part of the ranking have to be included in the calculation

with a P@k = 0.

Arguably one of the most compact and concise definitions

of AP can be found in Buckley and Voorhees [24], which

states: “Average Precision is the mean of the precision scores
obtained after each relevant document is retrieved, using zero
as the precision for relevant documents that are not retrieved.”
This formulation iterates over the retrieved documents ranking

instead of iterating all relevant documents (as done by Man-

ning et al. [32]) and is the most common form to be found in

IRFL literature:

APb =

∑|Retrieved|
k=1 P@k · rel(k)

|Relevant| (6)

APm and APb produce identical results, although they

slightly differ in notation. We will refer to this metric as

APmb from now on, referring to it as the correct textbook

implementation of this metric.

However, in case of an empty relevant document set,

|Relevant| = 0, both Manning et al.’s [32] and Buckley and

Voorhees’ [24] AP are undefined due to a division by zero.

While neither of them discusses this possibility, we argue that

AP should be set to 0 in such scenarios.

APmb is not to be confused with average precision at seen
relevant documents as defined in the first edition of Yates

and Ribeiro-Neto’s book “Modern Information Retrieval” [33].

Yates and Ribeiro-Neto assume a ranking that is not exhausting

the full document library, being truncated at some point,

and the ranking including only a portion of the relevant

documents. Average precision at seen relevant documents is

then calculated as the sum of P@k of the relevant documents

in the ranking, divided by the number of relevant documents

occurring in the ranking:

APasrd =

∑|Retrieved|
k=1 P@k · rel(k)
|Relevant ∩ Retrieved| (7)

Yates and Ribeiro-Neto [33] remark that a high average
precision at seen relevant documents can still have poor

performance in terms of recall. This metric can be used in

precision oriented settings, and in cases where an exhaustive

ground truth is unavailable, therefore the number of Relevant
documents is (yet) unknown [41]. We will refer to this metric

as APasrd in this work.

Finally, Mean average precision MAP is the mean of all

queries’ q ∈ Q average precision:

MAP =
1

|Q|
|Q|∑
q=1

AP(q) (8)

MAP provides a single value score summarizing the perfor-

mance of a retrieval system over a number of queries. MAP
is commonly defined using APmb [24], [32], [41]. While it is

possible to use APasrd, such use in the context of incomplete

ground truth is known to be problematic [41].
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Along with MRR and TopN, MAP is one of the most

popular performance metrics used in IRFL research [23]. The

Retrieved documents in the context of IRFL experiments is the

set of bug fix locations in the codebase, most often presented at

file level, and commonly referred to as ground truth in IRFL.

A common assumption in fault localization experiments is that

a complete ground truth is available. This is reflected in the

benchmarks and datasets used in such experiments [23], [27].

In this work we consider the ground truth to be a set of source

code files.

IV. PROBLEM STATEMENT

Some definitions and implementations of the AP metric used

in IRFL research do not conform with the textbook version

APmb. This results in incompatible MAP metrics voiding any

comparison between publications, or even comparison be-

tween tools within the same publication. First, we discuss the

mathematical properties of the textbook definitions of APmb,

MAP, and deviating implementations in detail. We examine the

conditions that have to be met for performance overestimations

to occur. Finally, we briefly discuss the usage of the AP and

MAP metrics in IRFL research papers, and the prevalence of

the underlying conditions in IRFL experiments.

A. AP versions dissection

While the Retrieved set can possibly list all items from

the document library, in practice it is often truncated to

some degree, therefore containing only a subset of the full

document library. The most common divergence, and the one

that we focus on in this work, stems from different handling of

relevant but unretrieved documents in the calculation of AP,

manifesting in different values used for X in the following

generic definition of APx in Eq. 9.

APX =

∑|Retrieved|
k=1 P@k · rel(k)

X
(9)

Setting X = |Relevant| will produce an APmb according to

Manning et al. [32] and Buckley and Voorhees [24] acknowl-

edging unretrieved relevant documents with a P@k = 0, while

setting X = |Relevant ∩ Retrieved| will produce an APasrd

according to Yates and Ribeiro-Neto [33] simply ignoring

unretrieved relevant documents.

This leads to APasrd and APmb producing different results

under certain conditions, that we will now discuss in detail:

If a retrieval operation returns the full document library D,

therefore producing an exhaustive ranking, all relevant docu-

ments will be retrieved and therefore both metrics produce the

same result as Eq. 10 applies.

Retrieved = D =⇒ |Relevant ∩ Retrieved| = |Relevant|
=⇒ APasrd = APmb

(10)

Further, if only a single document d1 is in Relevant, both

metrics will produce the same result as long as Retrieved is

truncated after the relevant document, as shown in Eq. 11.

|Relevant| = 1 ∧ |Retrieved| ≥ rank(d1)

=⇒ APasrd = APmb
(11)

If Retrieved is truncated before the occurrence of the highest

ranked document d1, APmb will result 0 while APasrd will be

undefined due to division by 0, as shown in Eq. 12.

|Retrieved| < rank(d1) =⇒ |Relevant ∩ Retrieved| = 0

=⇒ APmb = 0

=⇒ APasrd = undef.
(12)

If the ground truth is empty, both metrics will be undefined.

|Relevant| = 0 =⇒ APmb = undef.

=⇒ APasrd = undef.
(13)

However, if there are multiple relevant documents, and the

Retrieved documents are truncated, it is possible that not all

relevant documents are retrieved. In such a case APasrd and

APmb could differ in X in Eq. 9 and therefore possibly produce

different results.

|Relevant ∩ Retrieved| ≤ |Relevant|
=⇒ APmb ≤ APasrd

(14)

If Retrieved are truncated in a way that no relevant docu-

ments are removed, APasrd will be equal to APab. However,

if one or more relevant documents are removed APasrd will

be strictly greater than APmb unless there are no relevant

documents left.

|Retrieved| ≥ max(rank(Relevant)) =⇒ APasrd = APmb

|Retrieved| < max(rank(Relevant)) =⇒ APasrd > APmb
(15)

Further, as relevant documents are truncated from Retrieved
documents, APasrd and APmb will deviate in different direc-

tions. APmb will decrease as a before non-zero P@k in Eq. 9

will become zero, while APasrd will increase as divisor X in

Eq. 9 representing |Relevant∩Retrieved| will decrease. Given

multiple relevant documents, a smaller cutoff, i.e. stronger

truncation, will produce lower values for APmb and higher

values for APasrd, therefore increasing the difference between

the two metrics.

Retrieved@(k) = cutoff(Retrieved, k)

Retrieved@(k−1) = cutoff(Retrieved, k − 1)

=⇒ |Retrieved@(k)| > |Retrieved@(k−1)|
=⇒ APmb@(k) ≥ APmb@(k-1)

=⇒ APasrd@(k) ≤ APasrd@(k-1)

=⇒ APasrd@(k) − APmb@(k) ≤ APasrd@(k-1) − APmb@(k-1)

(16)

Table I shows an exemplary ranking performed on a docu-

ment library with size |D| = 15, and highlights the difference

in calculation and results of APmb and APasrd when truncating

the rankings to |Retrieved| = 10.

The discussion above describes the mechanism behind

APasrd overestimating performance using the example of a

ranking being truncated at different levels. While the use

of APasrd obviously poses a problem for comparing tools

that produce different output ranking lengths, favoring the

tool producing shorter rankings, this issue also impacts ex-

pressiveness and validity of comparison when both tools are

1483



TABLE I: APmb and APasrd for an exemplary ranking to be

cut off at k = 10.

|Retrieved| = |D| = 15 |Retrieved| = k = 10
Rank Relevant P@K Rank Relevant P@K

1 1 1 1 1 1
2 1 1 2 1 1
3 3
4 4
5 1 0.6 5 1 0.6
6 6
7 7
8 8
9 9

10 10
11
12 1 0.33 - 0
13
14
15 1 0.33 - 0

APmb X = 5 0.65 APmb@10 X = 5 0.52
APasrd X = 5 0.65 APasrd@10 X = 3 0.87

TABLE II: APmb@10 and APasrd@10 for two different tools’

rankings.

Tool A Tool B
Rank Relevant P@K Rank Relevant P@K

1 1 1 1 1 1
2 2
3 3
4 1 0.5 4
5 5
6 6
7 7
8 8
9 9

10 10
11 11
12 12 1 0
13 13
14 14
15 15

APmb@10 X = 2 0.75 APmb@10 X = 2 0.5
APasrd@10 X = 2 0.75 APasrd@10 X = 1 1.0

truncated to the same length. Table II shows two exemplary

rankings produced by hypothetical tools A and B, and their

corresponding performance scores APasrd@10 and APmb@10 at

cutoff k = 10. We can observe that while Tool B clearly

produces the inferior rankings, its APasrd@10 performance is

higher than that of Tool A.

Finally, the handling of queries producing undefined APasrd

due to division by 0 as shown in Eq. 12 can additionally impact

MAP scores. Removal of such undefined datapoints instead of

setting APasrd to 0 equals a reduction of the number of queries

|Q| used in the divisor for the calculation of MAP. This results

in MAPasrd further overestimating MAPmb.

|Q| ≥ |Qdrop undef| =⇒ MAPasrd ≥ MAPmb (17)

B. AP in IRFL research

The conditions necessary for such an inflation of AP/MAP
scores are found in various research papers and corresponding

implementations. The ground truth to span multiple files is a

standard assumption in IRFL, and very common to be found

in IRFL datasets and benchmarks [4], [34], [42], [43]. The

prevalence of this assumption is the main reason for the usage

of the MAP metric, considering all relevant items in a ranking,

contrasted by RR and TopN metrics that only consider the

single highest ranking relevant item.

In a preliminary investigation, we found that some real

world IRFL tools do in fact truncate their results, producing

various lengths of ranking outputs. For example, BLIA [11]

returns a comparably small subset of the document corpus,

while BugLocator [4] and BRTracer [5] return exhaustive

rankings containing the whole document library.

Whether a tool produces an exhaustive ranking, or if only a

subset may be returned, is not discussed in any of the papers

we reviewed. Such truncations and exclusions may stem from

error handling, may be a design choice, or have other technical

reasons. However, uncovering such behavior by performing

code reviews is difficult and time consuming. Inspecting actual

tool outputs is the most promising path to determine if, and

to what degree, a tool truncates the output rankings.

Most of the reviewed publications describe AP / MAP as

defined by Buckley and Voorhees [24] (see Eq. 6), e.g., Wang

and Lo [7], [8] (AmaLgam), Zhou et al. [4] (BugLocator),

Lee et al. [34] (Bench4BL), Saha et al. [9] (BLUiR), and

Takahashi et al. [44]. However, some researchers redefine AP
in their papers to align with Yates and Ribeiro-Neto’s [33]

APasrd metric, e.g., Wong et al. [5] (BRTracer) and Rahman

and Roy [10].

Beyond these, there are other definitions of the metric that

further deviate from the textbook version APmb to be found

in IRFL research papers [23], [45], [46] and definitions that

are unclear to whether X = |Relevant ∩ Retrieved| or X =
|Relevant| was used [11], [21], [47].

When investigating the source code and datasets published

alongside some publications, we found that the implemen-

tations may differ from the definitions in the corresponding

papers. For example, Takahashi et al. [44] define AP along

Buckley and Voorhees [24], but their implementation uses

X = |Relevant ∩ Retrieved| in Eq. 6, or Kim and Lee [23]

define AP to sum P@k not only the relevant positions but

at all positions, while correctly implementing AP according to

Eq. 6. Others strictly oblige to the textbook definitions in both

their publications and implementations, as for example, Wang

and Lo [7], [8] (AmaLgam) use the total number of relevant

items according to ground truth.

Incorrect ground truths in IRFL datasets, as documented by

Kim and Lee [23], can further widen the gap between APmb

and APasrd scores. For example, in a preliminary investigation

we found the ground truths provided in the Bench4BL dataset

[34] to be inflated with files that were added in commits after

the provided code base snapshots, rendering them unretriev-

able. Such bloated ground truths will decrease APmb scores,

further widening the gap between the two metrics.

To summarize, there are mainly two versions of the AP met-

ric used in IRFL research. The first is the textbook definition
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of AP by Manning et al. [32] and Buckley and Voorhees [24],

the second is similar to Yates and Ribeiro-Neto’s [33] average
precision at seen relevant documents which is problematic due

to its insensibility to recall. It is difficult—and sometimes

impossible—to determine which version of the metric was

employed. Results calculated with a given metric may differ

based on the level of truncation of a tool’s outputs. If a tool’s

produced rankings are truncated, and to what degree, is not

discussed in any of the reviewed papers, and only determinable

via experiment. Thus, AP and MAP values obtained from

different tools and evaluations may not be directly comparable,

even when they are based on the same datasets.

V. EXPERIMENT SETUP

We want to demonstrate the magnitude and prevalence of

errors that may arise from applying deviating implementations

of the AP metric to measure fault localization performance on

an established IRFL bug benchmark, namely Bench4BL [34].

In this section, we first explain the reasons for choosing

Bench4BL and the benchmark’s structure and issues, before

we present our research questions.

A. Benchmark

A number of benchmarks/datasets specifically designed for

the evaluation of IRFL approaches are publicly available [27].

Our selection criteria are dataset size, integration of existing

IRFL tools, and age of the benchmark. We have selected

Bench4BL [34] for our evaluation because of its size, com-

pleteness of the provided data, it being a rather young and

contemporary dataset, and its integration of five existing

IRFL tools. The benchmark also contains the AspectJ, SWT,

ZXing, JDT, and PDE datasets already used in previous IRFL

research [4], [5], [11], [48], [49]. The included tools are

BugLocator [4], BLIA [11], [47], BLUiR [9], AmaLgam [7],

[8], and BRTracer [5]. Further, the Bench4BL authors provide

a scripting framework for automating setup and execution

of experiments. The included scripts were used as-is for

running the IRFL tools to produce the rankings used in our

experiments.

Contents and provided materials: Bench4BL [34] consists

of 10 017 bugs from 51 different open source Java projects

from five different organziations (Apache, Spring, Wildfly,

Commons, JBoss). These bugs are distributed over 695 dif-

ferent versions of these software projects. Bench4BL contains

the code base of a project for each of these different versions

to be used as the document corpus for bug reports created on

this version.

Part of the Bench4BL benchmark is a smaller collection

of bug datasets that have been in widespread use in previous

IRFL research. This collection spans 558 bugs from AspectJ,

JDT, PDE, SWT, and ZXing, and is discussed under the label

of “old subjects” in the original publication. The AspectJ bugs

originate from the widely used iBugs dataset [48]. We will use

this “old subjects” sub-dataset only in RQ1, as its structure

slightly differs from the remainder of Bench4BL, resulting in

added complexity and compatibility issues for the remainder of

TABLE III: BugLocator MAPmb and MAPasrd on various

cleaning stages of Bench4BL.

Dataset MAPmb MAPasrd Overestimation
Unmodified Bench4BL 0.4006 0.4153 3.663 %
Rectified bloated ground truth 0.4159 0.4153 -0.137 %
Rectified ambiguous filenames 0.4158 0.4160 0.048 %

our evaluation. The following dissemination of the Bench4BL

benchmark focuses only on its “new subjects”.

The benchmark does not provide intermediate files as, for

example, the outputs of the included IRFL tools. We therefore

reran the Bench4BL experiments for BugLocator, BRTracer,

and BLIA ourselves. We only consider valid rankings pro-

duced by these tools. For example, non-existent ranking out-

puts due to crashes, empty output files, and other obvious er-

roneous outputs are excluded from our evaluation. BugLocator

and BRTracer produced 9278 valid rankings, BLIA produced

8709 valid rankings.

Due to dependencies to outdated Java libraries, rerunning

the Bench4BL experiments for BLUiR and AmaLgam is not

a straight forward task. We therefore use the intermediate files

and tool outputs provided by Takahashi et al. [44] for BLUiR

and AmaLgam. Takahashi et al. [44] have removed program

versions that contain less than five bugs in their work, the

resulting number of rankings available to us is 6931 for both

BLUiR and AmaLgam.

Dataset Issues: In preliminary experiments we discovered

some issues with the benchmark that influence and distort the

calculated APasrd and APmb scores. We calculated the MAPab

and MAPasrd scores of BugLocator on the full Bench4BL

benchmark. We selected BugLocator for this discussion as

it returns exhaustive rankings covering all existing files in

the target project’s repository. MAPab and MAPasrd should in

theory provide the same results in this scenario.

However, MAPasrd is 3.66 % higher than MAPmb as shown

in Table III. When we investigated this effect, we found that

there are files listed in Bench4BL’s ground truth that do not

exist in the given code base. We will refer to this effect as

bloated ground truth.

Bench4BL provides the code base of the target projects at

certain tagged versions. The bugs associated with a specific

version have their bug fixing commits an unknown number of

commits after the tagged version commit. A file that is added

in a commit after the version tagged commit, but before the

bug fixing commit, can therefore occur in the change set of

the bug fix, but not exist in the provided version of the code

base. About 19% of bugs in Bench4BL have such a bloated
ground truth. A benchmark that would avoid such behavior

would require document corpora based on the commit just

before the fix was applied. In order to rectify, we remove files

from the ground truth that do not exist in the target projects’

source repositories.

When removing these files, MAPasrd is now 0.14 % lower

than MAPmb (see Table III), which should not be possible

according to their definitions. Investigation showed that this
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effect arises from ambiguous file names in the rankings and

ground truth. Such ambiguity arises from somewhat unconven-

tional formatting for file identifiers produced by BugLocator

and other tools. The first part of the path being the Java

package, followed by the classname and a ‘.java’ file ending.

However, such naming schema can only uniquely identify a

file in a source code repository as long as there is only a single

src folder containing all Java code. Although rare, such name

collisions occur in the Bench4BL projects, for example, if

there are multiple Java projects with a similar structure located

in the same repository. If such an ambiguous file identifier

occurs in the ground truth, it will lead to multiple files in

the tools’ ranking to be marked as relevant, and therefore

increase the number of relevant files used for the calculation

of MAPasrd. This constellation occurs in approximately 0.3%

of bugs when using BugLocator rankings. We will refer to this

effect as ambigous file names.

In order to rectify, we keep only the first occurrence of a

file identifier in a tool’s ranking, removing later duplicated

occurrences. The corresponding MAPasrd and MAPmb scores

including this final cleaning step are shown in Table III in

row ‘Rectified ambiguous filenames’.

We found that some of the investigated tools can produce

file names that miss parts or complete path information and

therefore cannot be matched with the ground truth, or the

projects’ source for that matter. Examples are ‘$.DirectCompo-

nent.java’ and ‘ TOP LEVEL PACKAGE . SEGMENT

PACKAGE .ScaffoldMobileApp-template.java’. These en-

tries are often superfluous, simply inflating the rankings’

lengths, while sometimes the corresponding correct file iden-

tifiers are missing from the rankings. Such behavior can be

observed for multiple IRFL tools, most notably BugLocator

and BRTracer with the above described behavior, and AmaL-

gam by default not returning full paths, but only the top five

Java package levels. We cannot rectify these other issues.

In the following experiments we will either refer to the

cleaned Bench4BL dataset, where both bloated ground truth
and ambigous file names issues were rectified, or the unmod-
ified Bench4BL dataset.

B. Research questions

As established in Section IV, two basic conditions have to

be met to enable APasrd producing higher scores than APmb:

(1) the ground truth contains more than a single file, and (2) the

results of the tool are truncated / are only a subset of the full

document library. To quantify these two conditions, we have

the following two research questions:

RQ1: How big is the average ground truth in Bench4BL
datasets, and what proportion of bugs have a ground truth
containing multiple files?

RQ2: Do the IRFL tools included in Bench4BL truncate
their results?

To answer RQ1 and RQ2, we analyze the data provided

by the Bench4BL datasets, and the corresponding outputs of

IRFL tools when executed on this dataset.

Then, we investigate the magnitude of overestimation of

APasrd over APmb as a function of truncation level of otherwise

identical rankings:
RQ3: How strong is APasrd overestimating APmb for trun-

cated BugLocator retrieval results on the Bench4BL dataset?
To answer RQ3, we truncate the rankings at various lengths

and calculate the APasrd and APmb scores. We use the ranking

results produced by BugLocator executed on Bench4BL as

the basis for this analysis. We have chosen BugLocator as it

produces untruncated, exhaustive rankings and as the tool has

become a de-facto standard baseline for IRFL performance

comparisons [5], [8], [9], [11], [50].
Within RQ3, we also investigate the combined effects of

truncation and incorrect ground truths and the impact of

removal of undefined AP scores:
RQ3a: How strong is APasrd overestimating APmb for

truncated BugLocator retrieval results when considering the
bloated ground truth issue found in Bench4BL?

RQ3b: How strong is APasrd overestimating APmb for trun-
cated BugLocator retrieval results when undefined AP values
are simply ignored?

VI. RESULTS AND DISCUSSION

In the first part of this section, we evaluate and discuss RQ1

and RQ2 on the basis of the Bench4BL dataset and its included

IRFL tools. We then evaluate and discuss RQ3 on the basis

of BugLocator rankings from a cleaned Bench4BL dataset.

In RQ3a and RQ3b we go into further detail, evaluating and

discussing the additional and amplifying effects of dataset and

ground truth issues, and different strategies of dealing with

undefined AP scores.

A. RQ1: Ground truth size
To answer RQ1, we analyze the ground truth provided for

each bug in the Bench4BL dataset. The bloated ground truth
issue discussed in Section V-A directly influences this mea-

sure, and we therefore calculate this for both, the unmodified

Bench4BL, and for the cleaned Bench4BL dataset.
In the unmodified Bench4BL dataset, the average number

of ground truth files per bug is 3.48, with 43.75 % of bugs

having more than one file in its ground truth. In the cleaned

dataset, the average number of ground truth files per bug is

2.68, with 38.25 % of bugs having more than one file in its

ground truth. The average ground truth size of Bench4BL’s

“old subjects” sub-dataset is 3.30 files per bug, with 59.13 %

of bugs having multiple files in their ground truths.
These results, together with the widespread use of

Bench4BL, especially its “old subjects” sub-datasets, show

that ground truths covering multiple files are a quite common

occurrence in IRFL experiments.

B. RQ2: Tool truncation behavior
To answer RQ2, we analyze the outputs of BugLocator, BR-

Tracer, BLIA, BLUiR, and AmaLgam running on Bench4BL

bugs. We count the number of Java files in the versions’

codebase using cloc2 version 1.92 to establish a document

2https://github.com/AlDanial/cloc
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corpus size for each bug. We then measure the length of the

ranking produced by these tools for each bug.

Table IV shows the number of bugs/rankings, the per

bug average document corpus size for each bug, the per

bug average ranking length, and exhaustiveness of a tool’s

rankings as the average percentage of ranking length against

number of document corpus length. We do not apply any data

cleaning, and do not rectify any of the dataset issues discussed

in Section V-A. Superfluous file identifiers in BugLocator’s

rankings result in their length being slightly above 100 %

of the total number of available files. BLIA shortens output

rankings to about 12 % of the number of java files available

in the underlying projects’ repositories. BLUiR and AmaLgam

rankings are 7 % shorter than the number of files available. We

cannot determine if this behavior is the result of a conscious

design choice, result of error and exception handling within

the tool, or by accident, due to a lack of documentation.

TABLE IV: Averages of number of existing files |files|,
number of |Retrieved| files, and coverage of the tools ranking

in % on the unmodified “new subjects” Bench4BL dataset.

Tool # Bugs |files| |Retrieved| coverage in %
BugLocator 9278 2911 2920 100.4
BRTracer 9278 2911 2905 99.8
BLIA 8709 3020 353 11.9
BLUiR 6931 2658 2509 92.9
AmaLgam 6931 2658 2505 92.8

C. RQ3: AP sensibility on truncation

To investigate the difference in AP and MAP resulting

from the different versions’ sensibility on truncation level

rankings, we use the cleaned version (see Section V-A) of

“new subjects” Bench4BL dataset. We run BugLocator on

the benchmark yielding 9278 rankings for bug reports. We

implement APmb using the number of relevant items based

on the provided ground truth, and APasrd using the number

of relevant items in the ranking. If the calculated scores are

undefined due to division by zero, we set the result to 0. Based

on these two AP versions, we calculated resulting MAPmb and

MAPasrd values, truncating BugLocator rankings to fractions

of the document library length. Please keep in mind that the

underlying rankings stay the same, only differing in their

length, being truncated after the first k results.

Table V shows the resulting scores and the overestimation

of MAPasrd over MAPmb in percent. The effect of overesti-

mation diminishes towards untruncated rankings as expected.

Truncating the rankings to 10% of the document library length

can produce a MAPasrd that is 5.3% higher than the MAPmb.

At a rather shallow truncation level of 90% MAPasrd is still

overestimating by 0.24 %.

Figure 1 shows MAPmb and MAPasrd against the fractions of

the document library length k that the rankings were truncated

at. MAPmb of the un-truncated ranking is used as a baseline.

MAPmb slightly underestimates the performance if rankings

are truncated. This is explained by unretrieved documents

TABLE V: MAPmb and MAPasrd scores of BugLocator evalu-

ated on the cleaned “new subjects” Bench4BL dataset, trun-

cating results at fractions of the document library length.

Fraction MAPmb MAPasrd Overestimation in %
0.1 0.413 0.435 5.35
0.2 0.415 0.428 3.19
0.3 0.415 0.424 2.15
0.4 0.415 0.422 1.60
0.5 0.416 0.421 1.20
0.6 0.416 0.419 0.86
0.7 0.416 0.418 0.63
0.8 0.416 0.418 0.44
0.9 0.416 0.417 0.24
1.0 0.416 0.416 0.05

impacting APmb with their P@k value of 0 in this case.

However, MAPasrd will overestimate performance of truncated

rankings, as low recall is not punished.

This overestimation trend continues as retrieval results are

further truncated. The strongest truncation that we identified

in IRFL experiments [10], [51], [52] occurs in the form of a

MAP@10 score, using only the top k = 10 items of retrieval

results. Calculating such MAP@10 score using APasrd results

in performance being overestimated by 18.53 %.

D. RQ3a: AP sensibility on Dataset Issues

We repeated our experiment, calculating MAPmb and

MAPasrd on the unmodified version of Bench4BL, to in-

vestigate the combined effects of ranking truncation on an

imperfect dataset. Figure 2 illustrates that the gap between

reported APmb and APasrd performance scores is widened

by dataset inaccuracies as discussed in Section V-A. The

inaccuracies and issues in the Bench4BL dataset, especially

the bloated ground truth, lead to a correctly implemented

APmb score underestimating performance, while APasrd stays

mostly unaffected, as can be observed by comparing Figure 2

and Figure 1. The resulting MAPmb and MAPasrd scores for

a 0.1 fraction of the rankings are 0.398 and 0.435, and for

untruncated rankings the corresponding scores are 0.401 and

0.415. These results demonstrate how dataset inaccuracies

and impurities as for example a bloated ground truth further

amplify the overestimating effect of APasrd.

E. RQ3b: Effect of undefined AP

As already mentioned in Section IV, AP can be undefined
due to division by zero. For APmb, this occurs only when

cleaning the bloated ground truth results in an empty ground

truth. However, when applying APasrd, dividing by the num-

ber of relevant items contained in the retrieved items, such

occurrences are now connected to the level of truncation. The

more the results are truncated, the higher the probability that

all relevant items are removed from the retrieved items, and

therefore APasrd being undefined.

We investigate the effect size on MAP if this behavior is

ignored and data points where AP evaluates to undefined are

simply dropped from the evaluation. To do so, we repeat the

basic experiment outlined in RQ3 and truncate BugLocator
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Fig. 1: MAPmb and MAPasrd of BugLocator rankings truncated

at fractions of the document library length. Un-truncated

MAPmb is shown as a baseline. The cleaned “new subjects”

Bench4BL dataset was used.

Fig. 2: MAPmb and MAPasrd of BugLocator rankings truncated

at fractions of the document library length. Un-truncated

MAPmb is shown as a baseline. The unmodified “new subjects”

Bench4BL dataset was used.

retrieval results to fractions of the corresponding document

library size. However, this time, we simply remove data points

where APasrd = undefined and APmb = undefined. We use the

cleaned version of Bench4BL dataset to isolate the effect.

Figure 3 shows BugLocator’s MAP values based on APmb,

APasrd, for both strategies, dropping undefined data points,

and setting them to zero, for the uncleaned dataset. Dropping

data points leads to even stronger overestimation of MAP
performance calculated from APasrd. Truncating the retrieval

results to 10 % of the document corpus size leads to a spuri-

ous MAP performance increase of 17.26 % when comparing

APasrddrop-undef against textbook APmb. Truncating retrieval

results to only the top k = 10 items of retrieval results to

calculate a MAP@10 score using APasrddrop-undef results in

55.63 % overestimation of the correct APmb based score.

While the removal of the bloated ground truth re-

sults in some bugs having empty ground truths, impacting

MAPmbdrop-undef scores, this is not the case for the unmod-

ified Bench4BL with its non-empty ground truths. Removing

undefined AP values from the evaluation on the unmodified
Bench4BL dataset further widens the gap between the two

metrics. MAPmbdrop-undef equals MAPmb in this case as no

empty ground truths occur, while APasrddrop-undef is fur-

ther inflated. Truncating the retrieval results to 10 % of the

document corpus size leads to a spurious MAP performance

increase of 21.60 % when comparing APasrddrop-undef against

textbook APmb. Truncating retrieval results to only the top

k = 10 items of retrieval results to calculate a MAP@10 score

using APasrddrop-undef results in 71.59 % overestimation of

the correct APmb based score.

We therefore argue that AP should be set to 0 if the

ground truth is empty, to avoid spurious increases in MAP
performance due to possible errors in ground truth, mapping

of documents and retrieval results, and deviating metric im-

plementations, e.g., APasrd.

Fig. 3: MAPmb and MAPasrd of BugLocator rankings truncated

at fractions of the document library length. Un-truncated

MAPmb is shown as a baseline. The cleaned “new subjects”

Bench4BL dataset was used. Undefined instances of AP are

either dropped or set to 0.

F. Statistical significance

The overestimation effect is not stochastic in nature, but

mathematical defined by APasrd ≥ APmb and APasrd@(k−1) ≥
APasrd@(k) for cutoff k as discussed in our problem statement

in Section IV. This effect will only occur for a discrete

number of bugs in the dataset for any given cutoff, with the

remainder reporting equal scores. However, as a single data
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point with inflated APasrd within a sample will be reflected as

an increase in corresponding MAP score, MAPasrd > MAPmb

and MAPasrd@(k−1) > MAPasrd@(k) applies for any practical

considerations. As this change is strictly one directional,

statistical tests performed on the resulting distributions will

report a statistical significance bordering on certainty for any

reasonable sample size.

This is most apparent and easiest to demonstrate using

paired sign based tests, as for example, the sign test and

Wilcoxon signed rank test, as the signs of all unequal scores

point strictly towards APasrd@k and MAPasrd@k with shorter

cutoffs k by definition. While sign based tests have been found

to have inferior expressiveness for IR experiments [26], [39]

than paired Students t-test, they are still used in IRFL research

[5], [8], [44]. However, we argue that other statistical tests

used in IRFL experiments (e.g., Wilcoxon rank-sum and paired

Students t-test) will also report high significance when applied

to MAP scores, favoring MAPasrd@k with shorter cutoffs k, and

favoring MAPasrd over MAPmb.

To summarize, while we demonstrated and discussed the

effect size in detail, we refrain from performing statistical

significance tests as the underlying problem is not stochastic in

nature and these tests will report high significance by default.

However, we want to point out that statistical significance

tests are not capable of uncovering such spurious performance

improvements caused by deviating metric implementations.

G. Implications

Assume a hypothetical IRFL tool extending BugLocator,

or any other tool for that matter. This hypothetical tool

applies BugLocator and truncates the produced rankings to

a cutoff k without performing any other modifications. Us-

ing MAPasrd@k as performance metric, we can “improve”

performance scores by reducing the cutoff length k. Using

Bench4BL as evaluation dataset, performance scores can be

spuriously improved almost arbitrarily by modifying k, while

common statistical significance tests will report a high statistic

significance of the improvement. We want to highlight that

this is not a dataset/benchmarking issue, nor is there an issue

with truncated rankings per se, but this is an inherent issue

of the MAPasrd metric. Utilizing the textbook definitions APmb

and MAPmb, reducing the cutoff length k, performance scores

would be moderately penalized instead.

H. Threats to validity

The main threat to external validity is the selection of

Bench4BL for our demonstration of effect sizes. We limit

this threat by analyzing the underlying conditions enabling

the reported overestimation, most notably the ground truth

spanning multiple files. We show that this condition is also

met in the “old subjects” sub-dataset in Bench4BL that has

been used in numerous IRFL experiments in the past. Further,

we perform an in-depth analysis of the Bench4BL dataset

to identify and discuss the contained noise, inaccuracies, and

other issues. We implement steps to clean the dataset wherever

possible to reduce the influence on our experiment setup. We

discuss the effects of such dataset issues on the investigated

performance scores in separation.

We argue that a ground truth spanning multiple files is a

common assumption in IRFL research, and the widespread

use of MAP being a result of this, as this metric provides

a single value summary for rankings containing more than a

single relevant file. Further, we mathematically discussed and

dissected the different versions of the MAP metric to show the

underlying problems. Based on this analysis, we are confident

to argue that the problem discussed in this paper will impact

any IRFL experiments on any dataset, if the ground truths span

multiple files and retrieval results are truncated.

VII. CONCLUSION

In this work, we have discussed how deviation from the

textbook definition of the AP metric can lead to overestimation

of AP and MAP performance scores. We have examined the

mathematical properties of the textbook version of the AP
metric (APmb) and one common implementational deviation

(APasrd) and have discussed the conditions that can lead to

erroneous performance results: When the ground truth contains

more than one file, APasrd is sensitive to truncation of retrieval

results and overestimates the performance compared to the

textbook version APmb.

To underline our mathematical analysis, we have demon-

strated the relevance and magnitude of the problem on the

Bench4BL dataset, a benchmark specifically designed for

evaluating and comparing different IRFL approaches: Between

38 % and 44 % of bugs contained in Bench4BL have a ground

truth spanning multiple files. In the “old subjects” subset of

Bench4BL, this ratio is even higher with 59 % of bugs listing

multiple files as ground truth. This supports our argument that

ground truths spanning multiple files is not only a common

assumption in IRFL research, but is also reflected in the

corresponding IRFL datasets and experiments.

Out of the five investigated IRFL tools (BugLocator, BR-

Tracer, BLIA, BLUiR, AmaLgam), only BugLocator and

BRTracer produce untruncated, exhaustive retrieval results.

The truncation levels of the remaining tools range widely from

containing about 90 % of all available files in their ranking, to

truncating results to only about 10 % of the document library.

Truncating BugLocator’s retrieval results to 10 % of the doc-

ument library size results in MAPasrd overestimating MAPmb

by more than 5 % on the cleaned dataset, and more than 9 % on

the unmodified Bench4BL dataset. The MAP@10 performance

of BugLocator on a cleaned Bench4BL is overestimated by

more than 18 % when using MAPasrd@10 instead of the

textbook implementation of MAPmb@10.

Incorrect handling of empty ground truth sets—that can oc-

cur when truncating rankings— further inflate MAPasrd scores.

Retrieval results truncated to 10 % size, in combination with

a simple removal strategy of undefined APasrd scores result

in MAPasrd overestimating performance by more than 21 %

over the textbook implementation of MAPmb. Such removal

strategy applied to the calculation of MAPasrd@10 leads to a

72 % overestimation.
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To summarize, when applied to truncated retrieval results,

APmb slightly underestimates performance, while APasrd over-

estimates performance. Impurities, inaccuracies, and errors in

datasets amplify this effect. Incorrect handling of undefined
AP scores further widen the gap.

This creates a problem for transferability and comparability

of results across different research papers in the field of

IRFL. We advise to exclusively use AP/MAP according to

the definitions in Manning et al. [32] for iterating relevant
items (see Eq. 18) and Buckley and Voorhees [24] for iterating

retrieved items (see Eq. 19), with the extension of using

AP = 0 in undefined points, in IRFL research to avoid these

problems.

AP =

{∑|Relevant|
i=1 P@rank(di)

|Relevant| if |Relevant| > 0

0 otherwise
(18)

AP =

{∑|Retrieved|
k=1 P@k·rel(k)

|Relevant| if |Relevant| > 0

0 otherwise
(19)

Further, we ask researchers to describe their tools’ trunca-

tion behavior in their papers. Finally, we would like to call

out to the wider IR community for the creation of standard

software libraries containing implementations of the most

common performance metrics.

VIII. DATA AVALABILITY

The evaluation scripts and dataset artifacts used in our

experiments are publicly available on Zenodo [53].
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