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Abstract—Abstraction is an important approach for proving
the correctness of computer programs. There are many imple-
mentations of this approach available, but unfortunately, the
various implementations are difficult to reuse and combine, and
the successful techniques have to be re-implemented in new tools
again and again. We address this problem by contributing the tool
CEGAR-PT, which views abstraction as program transformation
and integrates different verification components off-the-shelf. The
idea is to use existing components without having to change
their implementation, while still adjusting the precision of the
abstraction using the successful CEGAR approach. The approach
of CEGAR-PT is largely general: It only restricts the abstraction to
transform, given a precision that defines the level of abstraction,
one program into another program. The abstraction by program
transformation can over-approximate the data flow (e.g., havoc
some variables, use more abstract types) or the control flow (e.g.,
loop abstraction, slicing). To illustrate our tool, we provide a
demonstration video, accessible at https://youtu.be/ASZ6hoq8asE.

I. INTRODUCTION

Program transformations are a promising approach for

improving the capabilities of software verifiers [1, 2, 3, 4, 5, 6].

These program transformations are applied on the source

code of the program, producing a new, transformed program,

which over-approximates the original behavior (or maintains

it equivalent) with the goal of making the verification easier.

Figure 1 shows an example of such a program transformation.

1 int main() {
2 int y = nondet();
3 if (y < 100) {
4 while (y < 10000) {
5 y += 1;
6 }
7 if (y != 10000) {
8 error();
9 }

10 }
11 }

(a) Original program

1 int main() {
2 int y = nondet();
3 if (y < 100) {
4

5 y = 10000;
6

7 if (y != 10000) {
8 error();
9 }

10 }
11 }

(b) Simpler but equivalent program

Fig. 1: Loop abstraction by source-code transformation

Due to the variety and flexibility of program transformations,

we need to address multiple concerns when using them: How

to make use of the program transformations as part of the

verification process? How to ensure the modified program

correctly models the original program’s semantics? How to

choose the most suitable program transformations?

Program transformations are independent from the verifier

being used. This makes it possible to use the transformed

programs as input for several verifiers, increasing reusability

of the program transformation. This is especially important

since such transformations are usually difficult to implement

and bugs could result in unsoundness of the verifier.

In order to ensure that the answer of a verifier for a

transformed program also applies to the original program, we

need to ensure that the transformation is over-approximating.

The correctness of a specific transformations [2, 5] can be

ensured by formal proofs. As a complementing technique,

we can also leverage verification witnesses [7, 8] and check

whether the result can be validated on the original program

with the information that was computed as witness for the

transformed program.

While program transformations are widely used [1, 2, 3, 4],

the way how these can be combined is still an open question.

A possible solution for this problem is to use counterexample-

guided abstraction refinement (CEGAR) [9, 10] to select a

suitable level of abstraction. This allows us to automatically

select program transformations that are useful for the verifi-

cation task at hand, while ruling out transformations that are

on the wrong abstraction level.

In order to address these concerns, we present a modular

CEGAR approach for applying program transformations for ver-

ification, and provide an implementation in our tool CEGAR-PT.

We decompose the verification approach into four different

components, which allows for reuse of existing off-the-shelf

components, as inspired by the unifying component framework

for cooperative verification [11].

Contribution. We provide the following contributions:

• CEGAR-PT can integrate any separately implemented
program transformation in CEGAR.

• CEGAR-PT enables CEGAR for automatic selection of

suitable program transformations.

Related Work. CEGAR-PT adopts the approach of

counterexample-guided abstraction refinement (CEGAR) [9, 10]

to loop abstraction in a modular way. There are two very

related results, which paved the road for our investigation:

C-CEGAR [12] implements CEGAR in a modular way, using

off-the-shelf components. The precision in this approach

consists of precisions for predicate-based abstractions, such as

predicate abstraction and trace abstraction. The main insights

are that the overhead of modularization is not prohibitive, and
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that the effectiveness can be increased by leveraging a more

diverse set of verification components.

Unified Loop Abstraction [2] proposes to use CEGAR for

loop abstractions inside a specific verifier. The main insight is

that it is possible to use control-flow refinement using CEGAR.

The approach unifies several approaches for loop abstraction

in one framework as control-flow abstraction. CEGAR-PT goes

a step further and uses off-the-shelf program transformations

in the refinement step of CEGAR. In other words, CEGAR-PT

is similar to C-CEGAR, but the abstractions are not data-flow

abstractions but control-flow abstractions.

Symbolic Computation via Program Transformations [6]

explores a way to apply program transformations separately

from state-space exploration. While we also aim at separating

these concerns, we employ CEGAR to choose between various

applicable program transformations while they only discuss

CEGAR inside the state-space exploration.

II. BACKGROUND

Program Transformations. Program transformations find their

use in a wide variety of application areas [13, 14]. For aiding in

program verification, we distinguish between local and global

transformations. Global transformations essentially change the

whole program and aid a specific analysis, e.g., symbolic com-

putation [4], sequentialization of concurrency [15], or removing

complicated language constructs [16]. Local transformations

aim at improving the verifiability of certain local program

statements such as loops.

Here we concentrate on local transformations of program

loops that are already available in CPACHECKER [2], namely

“Constant Extrapolation”, “Havoc Abstraction”, “Naive Ab-

straction”, and “Output Loop Abstraction”.

Verification Witnesses. Witnesses are artifacts that can be

produced by a verifier together with its verdict. A well-

established format [7, 8] defines witnesses as protocol automata

relative to the program’s control-flow automata (CFA) that

either track paths to the discovered specification violation

(called violation witnesses) or invariants that are useful for

proving the program correct (called correctness witnesses).

CEGAR. Counterexample-guided abstraction refinement

(CEGAR) [9, 10] is an algorithm that starts with an abstraction

over-approximating the behavior of a program. Using this

abstraction it attempts to prove or disprove that program P
satisfies specification ϕ. Once a potential counterexample has

been found, its feasibility is checked. If the counterexample

is feasible, an alarm is raised and CEGAR terminates. If the

counterexample is infeasible, then the abstraction is refined

using information learned from the counterexample and the

process starts again. The abstraction and its refinements are

defined by the precision. Figure 2 illustrates this cyclic process.

III. CEGAR FOR PROGRAM TRANSFORMATIONS

While state-of-the-art verification tools usually track the

abstraction as data-flow domains (e.g., predicates [17]) over the

program states, control-flow abstractions can also be encoded as
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Fig. 2: General workflow of CEGAR (taken from [12])

abstractions used in CEGAR [2]. CEGAR-PT integrates external,

off-the-shelf control-flow transformations into CEGAR, i.e., we

eliminate the dependency on the internal program representation

of a particular verifier. This allows any off-the-shelf verifier to

make use of the control-flow abstractions.

In order to make program transformations available to all

verifiers, we decomposed the CEGAR loop into multiple

components, similar to [12]. These components interact via

well-defined interfaces, which makes it easy to replace and

compare different implementations of the same component.

Figure 3a shows this decomposition. For simplicity, the

precision π, which is passed through every step in the loop,

and modified by the program transformer, is omitted in Fig. 3a.

Each component will be introduced in a general context,

followed by a description on how they are instantiated in the

tool demonstration.

1) Program Transformer: This component takes as input a

program and a precision increment, and produces as output a

new, transformed program and a precision. The precision can

be used to guide the verifier or validator. Using the precision

increment, the program transformer can determine the next

control-flow abstraction to be applied in order to improve the

level of abstraction.

CEGAR-PT uses patches produced by CPACHECKER’s loop

abstraction [2] to implement the program transformer. The

transformations are applied to the original program P in order

to produce a new program P ′. Which transformation (which

patch) to use is determined by the precision π and the precision

increment. The transformation either over-approximates the

concrete program semantics, in which case it is called an over-

approximating transformation, or leaves it equivalent, in which

case it is called a precise transformation.

2) Verifier: Calls to a software verifier are encapsulated

using COVERITEAM [18], which provides a common interface

for using off-the-shelf verifiers. It allows the usage of at least

all 45 verifiers for C that participated in the competition on

software verification [19]. The verdict that the verifier produces

corresponds to the transformed program P ′. In order to translate

this verdict to a verdict for the original program P , we use the

information about P ′ that the program transformer included

in the precision. This information tells us which verdicts can

be returned and which need to be validated.
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Fig. 3: Structure of the various components of CEGAR-PT

Since all used transformations of CEGAR-PT are either over-

approximating or precise, we can directly report proofs. Alarms

need to be validated, as explained in the following section.
3) Feasibility Check via Witnesses: A counterexample for a

transformed program P ′ whose state space over-approximates

the state space of the original program P cannot be returned

directly to the user, because the counterexample for P ′ could

be infeasible for P .
In order to solve this problem, our feasibility checker

converts the witness from the verifier of the transformed

program P ′ to a witness for the original program P and

validates if the verdict provided by the verifier applies to P
as well. Therefore, the feasibility checker is composed of two

components: (1) a projection operator that uses the witness

of P ′, specification ϕ, and the precision π to produce a

witness w for P and ϕ, and (2) a component from any off-the-

shelf witness validator (there are at least ten available [19])

that validates the witness w.
The precision tracks which transformations were applied.

This allows us to determine which program lines present in

the witness were not from the original program. Removing

these lines allows us to get a witness for the original program,

i.e., project the witness for pair P ′, ϕ to a witness for P , ϕ.
4) Precision Refinement: In order to refine the choice

of program transformations being used, information can be

extracted from the produced witness. This allows the program

transformer to learn from previously failed transformations

how to make the abstraction (and the transformed program)

more precise.
Our approach can use multiple (loop-abstraction) transforma-

tions. These transformations are produced and applied to the

original program by the program transformer. The precision

tracks which transformations were applied, while the precision

increment tracks which transformations were ruled out and

which ones can still be applied. Since we only consider

transformations that over-approximate or keep the program

semantics equivalent, we only need to deal with violation

witnesses from the verifier. In order to determine the precision

increment, the precision refinement selects one transformation

whose modified program lines coincide with the program lines

present on the error path of the violation witness. It then selects

the next transformation to be used for that part of the program.

The identity function, resulting in the original program, is

considered as last transformation.

5) Precision: The precision contains information about the

process of producing a new, transformed program P ′. This

information can be used to see which verdicts of the verifier

can be returned as is and which need to be validated. It can also

be used to inform the validator how to transform the witness of

the transformed program into a witness of the original program.

The precision introduces a dependency between the feasibil-

ity checker and the program transformer, because the feasibility

checker needs to project the witness into one for the original

program. This still allows for use of an arbitrary witness

validator, but the projection must consider what program

transformer is being used.

In our demonstration, which uses CPACHECKER as a program

transformer, the precision remembers which transformations

had been applied to the original program, what type of

transformations they were (i.e., over-approximating or precise),

and which program lines of the modified program were part

of the original program. This allows all the other components

to determine the information they need.

IV. TOOL DEMONSTRATION

In order to illustrate CEGAR-PT we provide a demonstration

in form of a screencast1. The screencast shows an example run

of CEGAR-PT, using CPACHECKER as the off-the-shelf verifier,

to verify a program with multiple loops. Each loop is replaced

by one of the loop abstractions made available by CPACHECKER.

Afterwards the intermediate steps of CEGAR-PT during this

execution are shown by using the debug option. Finally, the

example is also verified using SYMBIOTIC as a verifier instead

of CPACHECKER.

V. EVALUATION

A full evaluation of CEGAR-PT and comparison using

different verifier backends can be found on our supplementary

webpage2. This supplementary evaluation aims to answer the

following two research questions:

• RQ 1: Do the program transformations improve the

number of tasks that can be solved by off-the-shelf verifiers

at a negligible overhead?

• RQ 2: How do the execution times compare between using

program transformations in a modular setting to using

them inside the verifier?

1https://youtu.be/ASZ6hoq8asE
2https://www.sosy-lab.org/research/cegar-pt/
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VI. APPLICATIONS

We now explain application scenarios for CEGAR-PT.

Reuse of existing program-transformation techniques. Pro-

gram transformations that are already implemented in one

tool can be made available to other tools by turning them

into a separate, externally usable component. This allows

transformations to be quickly used by other tools without

having to reimplement them for other internal representations.

Developers of verifiers can this way quickly evaluate if such a

program transformation is beneficial for their tool and if it is,

they may decide to implement it inside their tool.

Development of new program transformations. Developing

program transformations can be difficult. Using CEGAR-PT,

this process can be improved, by first implementing the

abstraction as program transformation in CEGAR-PT, evaluate

this implementation, and if this improves the verification

process, it can then be used as program transformation, or

implemented in the verifier of choice. Especially considering

that CEGAR-PT is written in Python, it is easy to quickly

prototype different approaches using it.

Development of selection heuristics. In order to select the best

program transformation to be used when a refinement occurs in

the CEGAR loop, a selection heuristic is necessary. Due to the

modular nature of CEGAR-PT, more program transformations

can be used in order to determine a more general or better

selection heuristic.

VII. CONCLUSION

Program transformations have been shown to increase the

number of problems that a verifier can solve (see, e.g., [20]). In

order to make program transformations reusable, and to simplify

their development process, we developed the tool CEGAR-PT.

This new tool integrates external program transformations into

the CEGAR loop, which can be used with any off-the-shelf

program transformation and any off-the-shelf verifier. The

CEGAR loop also checks the feasibility of the counterexamples.

Using a modular approach introduces a small performance

cost for simple tasks, compared to directly manipulating

the control-flow structure inside a verifier. Nonetheless, it

allows for the reuse and simpler implementation of program

transformations, which is much more important than the

relatively small performance gain.

It has been a research question since long to identify

intermediate results that can be made available for monitoring

and understanding of the verification process. We believe that

using the programming language of the input program as

exchange format is a choice that easily enables exchange.

Data-Availability Statement. The tool CEGAR-PT is licensed

under the open-source license Apache 2.0. The tool is available

at https://gitlab.com/sosy-lab/software/controlflow-cegar, and

we prepared a reproduction package [21] to explore the features

of our tool and to replay the demonstration. The description

of the evaluation experiments and the corresponding data are

available on our supplementary web page.2
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