
IEICE Communications Express, Vol.13, No.7, 240–243

LETTER

Evaluation of HTTP request anomaly detection model using fastText and
convolutional autoencoder
Haruta Yamada1, a) and Ryoichi Kawahara1, b)

Abstract With the advent of the Internet and its close connection to peo-
ple’s lives, web applications have become increasingly important. To ensure
that the web application is secure, a web application firewall (WAF) detects
and stops attacks that exploit application vulnerabilities in communica-
tion with server applications. However, these firewalls require continuous
tuning by experts with in-depth knowledge of the technologies and ser-
vices provided, which may become a major obstacle to the introduction
of WAF. To resolve this problem, we developed two autoencoder-based
models based on an unsupervised learning model that uses only normal
requests, considering the implementation and operation costs. We then
evaluated the performance of the two autoencoder-based models. The first
model converts a hypertext transfer protocol (HTTP) request into ASCII
codes and learns their relationship in a normal request using an autoen-
coder. The second model generates an array of word vectors using fastText
and learns using a convolutional autoencoder, which solves the problem
identified in the performance evaluation of the first model where the prob-
lem was that the simple conversion to ASCII codes was not enough to
distinguish between normal and anomalous requests. The two models were
evaluated using the HTTP DATASET CSIC2010 dataset. The AUC for the
second model was approximately 0.94 while that for the first model was
approximately 0.71. This means that the second model has higher accuracy
despite being an unsupervised approach, one that does not require labeled
anomalous requests, and can be applied with low costs.
Keywords: web application firewall, anomaly detection, autoencoder, fast-
Text
Classification: Network

1. Introduction

With the advent of the Internet and its close connection to
people’s lives, web and mobile applications have become
commonplace. In such a scenario where private user in-
formation may be vulnerable to unauthorized access, server
application security is one of the most important aspects of
deployment. In the “10 Major Information Security Threats
2023” published by the Information-technology Promotion
Agency, Japan, threats related to server applications are
ranked in both individual and organizational sections. At-
tack techniques that exploit web application vulnerabilities
are also diverse. Examples include structured query lan-
guage (SQL) injection, cross-site scripting, and operating
system (OS) command ejection.

Web application security is ensured by a web application

1 Faculty of Information Networking for Innovation and Design,
Toyo University, Kita-ku, Tokyo 115-8650, Japan

a) s1f101900273@iniad.org
b) ryoichi.kawahara@iniad.org

DOI: 10.23919/comex.2024XBL0060
Received March 21, 2024
Accepted April 8, 2024
Publicized May 9, 2024
Copyedited July 1, 2024

firewall (WAF), which detects and blocks attacks that ex-
ploit server vulnerabilities during communication (mainly
hypertext transfer protocol (HTTP)/hypertext transfer proto-
col secure (HTTPS) requests) with server applications.

Recently, research has been conducted on WAF that uses
machine learning. There are two main methods. The first
method uses a supervised machine learning model with la-
beled normal and anomalous requests (i.e., each request is
labeled as normal or anomalous in the training data), whereas
the second method uses an unsupervised machine learning
model with only normal requests. Jemal et al. [1] developed
a convolutional neural network-based supervised learning
model. The model converts an HTTP request into ASCII
codes when it is input. This method of converting a request
to ASCII codes increases the amount of information in the in-
put data and affects the model’s processing time; hence, only
parameters that affect the accuracy of the model are extracted
from the request. Mac et al. [2] developed an unsupervised
learning model using an autoencoder and extended autoen-
coder. Before inputting the data into the model, this method
replaces the parameters with different tokens to enable the
model to interpret the parameters according to certain rules.
The proposed regularized deep autoencoder achieves high
accuracy comparable to that of supervised learning models.
Yan et al. [3] developed an unsupervised anomaly detection
algorithm based on self-translation machine with attention
mechanism. Similar to Mac et al. [2], they adopted the ap-
proach of replacing the parameters with different tokens to
enable the model to interpret them.

Supervised learning models must use appropriately la-
beled normal/anomalous requests to cover various patterns
of attacks to minimize the risk of unknown attacks. Com-
pared with supervised learning models, unsupervised learn-
ing models can be developed and deployed at relatively lower
operation costs because they only require the collection of
normal requests. However, because only normal requests are
used, defining the boundary between normal and anomalous
requests is difficult.

In this study, we developed a machine learning model with
an emphasis on unsupervised learning taking into account
the operation costs, and evaluated its performance. The goal
was to develop a model that is accurate as a pure classifier
and that considers implementation and operation costs. To
ensure that the model can interpret the parameters, it is nec-
essary to replace certain parameters with the tokens, as used
in the previous studies. However, selecting parameters to be
placed for applications that change daily can be challenging.
Furthermore, the requirement to develop a dedicated parser

This work is licensed under a Creative Commons Attribution Non Commercial, No Derivatives 4.0 License.
Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

240



IEICE Communications Express, Vol.13, No.7, 240–243

may result in significant implementation costs. Therefore,
we did not adopt the token substitution approach; instead,
we focused on developing a model using only a simple re-
placement process. Specifically, an approach of conversion
to ASCII codes or conversion to a word vector called fast-
Text [4] was used.

Many examples of using autoencoders have been reported
in studies on anomaly detection tasks [5, 6, 7], where the
autoencoders are a type of neural network consisting of an
encoder and a decoder for dimensionality compression and
restoration, respectively. Therefore, this study developed a
model based on an autoencoder.

In this study, we developed and evaluated the performance
of two autoencoder-based anomaly detection models. In
particular, the first method uses ASCII code conversion,
whereas the second method uses fastText and a convolutional
autoencoder.

2. First method with ASCII code

2.1 CSIC2010
Before introducing the first method, we describe the dataset
used in this study. We evaluated the performance of the
two methods through numerical experiments with the HTTP
DATASET CSIC2010 [8] (CSIC2010). CSIC2010 is a
dataset that has been used in several WAF studies, such
as those mentioned in related studies, and it includes re-
quests for an e-commerce web application. This dataset was
published by the Spanish Research National Council. The
dataset is divided into training and test datasets. The training
dataset comprises 36,000 normal requests, whereas the test
dataset comprises 36,000 normal and approximately 25,000
anomalous requests, respectively.

2.2 Preprocessing of input data
We adopted an approach from [1] that converts an HTTP
request into ASCII codes and passes them to the input layer
of an autoencoder-based model. Using ASCII codes in-
creases the amount of information and affects processing
time; hence, only the attack-specific parameters (method,
URL, and content) were extracted from the request and in-
put into this model. Specifically, the following procedure
was used to convert the requests:

1. Concatenate each parameter of the request into a single
string.

2. Convert each character of the string concatenated in
step 1 into an ASCII code (numeric value).

3. Divide the converted ASCII code by 128 and obtain the
remainder.

4. Divide the remainder by 128 to obtain a number be-
tween 0 and 1. Then, send it to the input layer.

2.3 Model construction
The model used in the first method has the following struc-
ture: The input and output layers comprised 1197 neu-
rons that matched the longest string in the training and test
datasets used in this study. The middle layer consisted of five
layers, with 128, 64, 32, 64, and 128 neurons in each layer.
The rectified linear unit (ReLU) and sigmoid functions were

the activation functions for the middle and output layers, re-
spectively. The mean-squared error (MSE) was used as the
loss function. This model contained 328,525 parameters.

2.4 Evaluation
Several methods that use unsupervised learning models have
been proposed for classification tasks. In this study, the MSE
values of the input and output data were used. Specifically,
after the model was trained using a training dataset of normal
requests, a request in a test dataset was tested; the request
that outputs an MSE (i.e., MSE for the individual elements
of the input/output vector for the request) above a preset
threshold was classified as anomalous (this type of anomaly
detection is based on [5], for example). In our evaluation, the
threshold was set to be x percentile of MSEs of individual
requests of the training dataset, where x = 90 is an example
as shown later.

The frequency distributions of the MSEs for the training
dataset, normal and anomalous data in the test dataset are
shown in Figs. 1, 2 and 3, respectively. The position of
each percentile (80, 85, 90, and 95) of the training dataset is
shown in each graph as a reference.

Figures 1 and 2 show that most normal requests have
negligible MSEs; however, groups were formed between

Fig. 1 MSE distribution of the training dataset.

Fig. 2 MSE distribution of the normal data from the test dataset.

Fig. 3 MSE distribution of the anomalous data from the test dataset.

241



IEICE Communications Express, Vol.13, No.7, 240–243

Fig. 4 Normal requests with particularly high MSEs.

0.08 and 0.10. Figure 3 shows that the MSEs for anomalous
requests are marginally higher than those for normal data;
however, over half of the data points are classified as normal,
even when the 80 percentile of the training dataset is used
as the threshold.

Figure 4 shows a list of normal requests with particu-
larly high MSEs. The character codes where differences
higher than the threshold are detected are highlighted with
[], indicating that they are particularly concentrated in the
query parameters and contents. That is, the MSEs of nor-
mal requests with numerous query parameters or contents
increased because character codes were learned individually
rather than as a single coherent character string (word).

3. Second method with fastText and convolutional au-
toencoder

This method uses the following three techniques to improve
the performance of the first method.

1. Generate word vectors to capture word features.
2. Exclude features (protocol, host name, etc.) that are

common to normal and anomalous requests to empha-
size features more.

3. Introduce a convolution layer to capture the surround-
ing word features.

Although there are several methods for generating word vec-
tors, we chose fastText, which is an open-source library
published by the Facebook AI Research Laboratory. It is
particularly used for tasks involving text representation and
classification. We applied it to our method to generate word
vectors from requests each of which is broken down into
words. This is because, one of the fastText’s features is the
support for subwords, which is expected to enable us to deal
with unknown words and/or synonyms specific to anomalous
data.

3.1 Preprocessing of input data
The procedure for processing the conversion of a request is
as follows:

1. Extract specific parameters (path, query parameters,
request body, etc.) from the request.

2. Divide each parameter into words.
3. The segmented words are combined into a single array1.
4. Generate a word vector array using fastText pre-trained

using the training dataset.
In this study, method, path, query parameters, and con-

tent were selected as the parameters to be extracted. Note
that, since some parameters may have a significant impact

1 The example is as follows: [’GET’, ’tienda1’, ’publico’, ’auten-
ticar.jsp’, ’modo’, ’entrar’, ’login’, ’aguistin’, ’pwd’, ’iNnota’,
’remember’, ’on’, ’B1’, ’Entrar’].

Fig. 5 Convolutional autoencoder.

Fig. 6 MSE distribution of the training dataset under second method.

on the performance of the model, care should be taken in
selecting parameters when developing models for different
applications.

3.2 Model construction
We used a convolutional autoencoder to capture the word
features surrounding the word vector array. The word vec-
tor size was set to 20 dimensions, and the number of words
that could be input simultaneously (number of words per
request) was set to 40, which is larger than the maximum
for the training and test datasets. For the activation func-
tion of the convolution layer, we used the parametric ReLU
(PReLU) function instead of the ReLU function because the
word vectors generated by fastText may take negative val-
ues and because we input directly into the model without
normalization. The Python code for the model is shown in
Fig. 5 2. The number of parameters was reduced to 8,417,
which is approximately 1/40 that of the first method.

3.3 Evaluation
The evaluation was performed using the same dataset as in
the first method. The MSE frequency distributions for each
dataset are shown in Figs. 6, 7, and 8. Compared with the
first method, the MSEs increased slightly for normal data,
and the 80 percentile increased from approximately 0.02 to
0.035. However, the leftward shift of the independent peaks
of the graph observed in the first method resulted in the
95 percentile decreasing from approximately 0.09 to 0.05.
Furthermore, MSEs significantly increased for anomalous
data. The number of data points that were classified as
normal despite being anomalous by each threshold value
was significantly reduced.

Finally, we compared the receiver operating characteristic
(ROC) curves for the first and second methods by plotting the

2 We performed zero padding on the input array to reach the spec-
ified dimension size when the number of words was insufficient.
(We also did something similar in the first method.)

242



IEICE Communications Express, Vol.13, No.7, 240–243

Fig. 7 MSE distribution of the normal data from the test dataset under
second method.

Fig. 8 MSE distribution of the anomalous data from the test dataset under
second method.

Fig. 9 ROC curve and AUC score for first method.

Fig. 10 ROC curve and AUC score for second method.

curves using normal and anomalous data of the test dataset
(Figs. 9 and 10). The results showed that the area under the
ROC curve (AUC) scores for the first and second methods
were approximately 0.71 and 0.94, respectively, confirming
an improvement in the score. For reference, when the thresh-
old was set to the 90 percentile under the second method,
the precision and recall scores were approximately 0.846
and 0.854, respectively.

4. Conclusion

In this study, to develop a simple unsupervised-learning-
based anomaly detection method for WAFs, we developed
two autoencoder-based models that consider implementation
and operation costs. Instead of adopting the token substitu-
tion approach used in related studies, the first method used a
simple approach in which an HTTP request is first converted
into ASCII codes and then the autoencoder learns the rela-
tionship of a normal request. Based on the evaluation results
of the first method, we proposed a second method that uses
fastText and a convolutional autoencoder to solve the prob-
lems experienced by the first method. We confirmed that the
second method detects anomalies more accurately than the
first method because it generates smaller and larger errors for
normal and anomalous requests, respectively. This means
that the second model has higher accuracy despite being an
unsupervised approach, one that does not require labeled
anomalous requests, and can be applied with low costs.

Although the model developed in the evaluation using the
CSIC2010 dataset showed a certain level of accuracy, it is
necessary to confirm whether the model has the same accu-
racy for services with different characteristics. Therefore,
further research is required.

Acknowledgments

We would like to thank Editage (https://www.editage.jp/) for
English language editing.

References

[1] I. Jemal, M.A. Haddar, O. Cheikhrouhou, and A. Mahfoudhi, “SWAF:
A smart web application firewall based on convolutional neural net-
work,” 2022 15th International Conference on Security of Infor-
mation and Networks (SIN), Nov. 2022. DOI: 10.1109/SIN56466.
2022.9970545

[2] H. Mac, D. Truong, L. Nguyen, H. Nguyen, H.A. Tran, and D. Tran,
“Detecting attacks on web applications using autoencoder,” Proc. 9th
Int. Symp. Inf. Commun. Technol., pp. 416–421, Dec. 2018. DOI: 10.
1145/3287921.3287946

[3] L. Yan and J. Xiong, “Web-APT-detect: A framework for web-based
advanced persistent threat detection using self-translation machine with
attention,” Lett. IEEE Comput. Soc., vol. 3, no. 2, pp. 66–69, 2020.
DOI: 10.1109/LOCS.2020.2998185

[4] https://github.com/facebookresearch/fastText, last accessed March
2024.

[5] Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe, and R. Kawahara,
“Anomaly detection and interpretation using multimodal autoencoder
and sparse optimization,” arXiv:1812.07136v1, Dec. 2018.

[6] X. She and Y. Sekiya, “A convolutional autoencoder based method
for cyber intrusion detection,” IEICE Tech. Rep., vol. 120, no. 414,
IN2020-77, pp. 138–143, March 2021.

[7] N. Ogawa and R. Kawahara, “Network anomaly detection and fail-
ure scale estimation method,” IEICE Tech. Rep., vol. 123, no. 177,
NS2023-57, pp. 32–37, Sept. 2023 (in Japanese).

[8] HTTP DATASET CSIC2010, Spanish Research National Council,
https://www.tic.itefi.csic.es/dataset/, accessed Nov. 2023.

243


