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ISAR imaging for drone detection based on backprojection algorithm using
millimeter-wave fast chirp modulation MIMO radar

Kenshi Ogawa1, a), Dovchin Tsagaanbayar1, and Ryohei Nakamura1

Abstract In this paper, we propose an inverse synthetic aperture radar
(ISAR) imaging method using a millimeter wave (mmW) fast chirp modu-
lation (FCM) multi-input and multi-output (MIMO) radar for drone detec-
tion. To obtain high-resolution ISAR images, the backprojection algorithm
is adopted for the ISAR processing. This algorithm is suitable for ISAR
imaging of a moving drone with an irregular motion. The measurement ex-
periments were conducted using flying drones (DJI Phantom 3, DJI Mavic
Pro and DJI Mavic Mini) in indoor situations to examine the effectiveness
of our proposal. The measurement results demonstrated that the proposed
method could generate the high-resolution ISAR images enough to recog-
nize the approximate size and shape of each drone.
Keywords: drone detection, millimeter-wave MIMO radar, fast chirp, radar
imaging, inverse synthetic aperture radar, ultra-wideband
Classification: Sensing

1. Introduction

Drones have advanced rapidly and are widely used in various
fields in recent years. However, along with their growing
use, concerns have arisen about the possibility that drones
can be abused for terrorism and crimes [1]. Therefore,
antidrone systems must be able to detect and distinguish
the threat drones. Radar is attracting significant attentions
as an effective drone detection technology because they are
not affected by weather conditions [2].

Several studies have been conducted recently on radar
imaging for drone detection and classification [3, 4, 5]. In-
verse synthetic aperture radar (ISAR), which is well-known
technique for generating high-resolution radar images, has
also been studied for drone detection. ISAR includes time
domain and frequency domain image construction methods.
In [3, 4], ISAR images of drones flying outside were con-
structed in the frequency domain. However, there are several
challenges to construct ISAR images in the frequency do-
main: the complete motion compensation for complicated
flight trajectory is generally difficult; large range migrations
deteriorate image quality [6]. In particular, the challenge is
accurate motion compensation for the irregular motion of
a drone because the flight path of a drone is complicated
by wind and maneuvers, making precise prediction difficult.
The backprojection algorithm is a SAR digital reconstruc-
tion algorithm for synthetic aperture processing while com-
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pensating for the motion of a target in the time domain [7].
Compared to frequency domain algorithms, this algorithm
can easily deal with the irregular motion in the motion com-
pensation process and produce highly accurate images even
when the range migration is large. To the best of our knowl-
edge, no study on ISAR imaging of flying drone based on
the backprojection algorithm has been reported. Therefore,
the effectiveness of ISAR imaging based on this algorithm
should be explored through a practical environment.

In this paper, we propose an ISAR imaging method
based on backprojection algorithm using a millimeter wave
(mmW) fast chirp modulation (FCM) multi-input and multi
output (MIMO) radar for drone detection. The FCM MIMO
radar achieves high range resolution by sweeping the fre-
quency over an ultra-wide bandwidth and estimate the dis-
tance and direction of arrival (DOA) of a target simultane-
ously. The fast pulse repetition time also allows the radar
to detect the detailed trajectory of a drone in a short period
of time. High-resolution radar images can be generated by
implementing the motion compensation based on the de-
tailed trajectory information obtained by the radar. Indoor
measurement experiments were conducted on three flying
drones: DJI Phantom3, DJI Mavic Pro, and DJI Mavic Mini.
In addition, the resulting trajectory and ISAR imagery are
presented to investigate the effectiveness of our proposal for
drone detection.

The rest of this paper is organized as follows. Section 2
is an explanation of ISAR imaging procedure using mmW
FCM MIMO radar. Section 3 shows our measurement re-
sults and a discussion of the effectiveness of our proposal.
Finally, we summarized this paper in Sect. 4.

2. ISAR imaging procedure

2.1 mmW FCM MIMO radar
Figure 1 shows a diagram of the mmW FCM MIMO radar.
The FCM radar transmits and receives a sinusoid signal
called chirp, whose frequency is modulated over an ultra-
wide bandwidth with time. The chirp modulation time and
observation time are called fast time and slow time, respec-
tively. A received chirp is mixed with a transmitted chirp
to measure the intermediate-frequency (IF) signal in each
channel. The MIMO channel data are reconstructed into the
MIMO virtual array which is single-input and multi-output
channel data of a contiguous virtual array [8]. The range
profiles showing distance from the radar to targets are esti-
mated by performing a fast Fourier transform (range FFT)
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on the IF signal obtained in each channel. The DOA can
be estimated by performing a beamformer method over the
indexes of the MIMO virtual array elements on all range
bins of the range profiles [9]. Using the distance and DOA
of a target measured by the radar, the rectangular coordinate
[xl(t), yl(t)] of a target at the t-th snapshot can be expressed
as follows:

[xl(t), yl(t)] = [R(t) sin(θ),R(t) cos(θ)] (1)

where, R(t) and θ(t) are the slant range and DOA of the
largest reflection point of a target at the t-th snapshot, respec-
tively. Drone consisting multiple components have many
scattering points. It follows that the largest reflection point
of a drone changes depending on the positional relation-
ship between the radar and the drone [5]. The coordinates
[xl(t), yl(t)] does not necessarily record a certain scattering
point and therefore contains errors according to the size of
drone. The random sample consensus (RANSAC) is a poly-
nomial fitting method to estimate parameters of a model
from the data that contains outliers, which exclude the out-
liers and find a suitable model [10]. To remove influence
of the errors, the motion model [xm(t), ym(t)] is estimated
by modeling the coordinate [xl(t), yl(t)] using the RANSAC
method.

2.2 ISAR processing based on backprojection algo-
rithm

The backprojection algorithm produces high-resolution
ISAR images through range compression using range FFT,
motion compensation, and azimuth compression using syn-
thetic aperture processing. The motion compensation pro-
cessing plays an important role in focusing the ISAR image.
Figure 2 shows the ISAR processing flow based on back-

Fig. 1 mmW FCM MIMO radar.

Fig. 2 ISAR processing flow.

projection algorithm. First, range compression using range
FFT is performed for one channel data in the MIMO chan-
nel, calculating the range profile s(u, t) of range bin u at
each slow time t. Then, motion compensation and azimuth
compression are processed simultaneously using the motion
model in the previous section. ISAR image Image(xi, yj) in
the spatial domain (xi, yj) can be expressed as follows:

Image(xi, yj) =
∫
t

s[ui j(t), t]e−j
4π fc
c Re (xi ,yj )dt (2)

Re(xi, yj) =
√
[xi − xm(t)]2 + [yj − ym(t)]2 (3)

s[ui j(t), t] ≈ s(u, t) (4)

where, fc and c are the center frequency and speed of light,
respectively. Re(xi, yj) is the Euclidean distance between a
given reflector at any grid point (xi, yj) on spatial domain and
the t-th spatial coordinate [xm(t), ym(t)] in the motion model,
which implies motion compensation in this algorithm. In
Eq. (4), s(u, t) is interpolated to reconstruct the s[ui j(t), t] so
that the range bin ui j(t) correspond to the Euclidean distance
in Eq. (3) at each slow time t.

3. Measurement experiments

3.1 Measurement setup
We tested three drones (DJI Phantom 3, DJI Mavic Pro, and
DJI Mavic Mini) with different shapes and sizes as shown in
Fig. 3 to generate ISAR images using a mmW FCM MIMO
radar module. Table I shows the specifications of the radar
and other parameters. The size of image cell for tracing
the ISAR imagery was 0.8 m square (128 × 128 pixels).
The number of range bin u was 1024 and was interpolated to
range bin ui j . Figure 4 shows the measurement environment.
Drones were flown in manual mode with remote control
indoor as shown in Fig. 4(a). Figure 5 shows the trajectory

Fig. 3 Tested drones.

Table I Specifications of radar and parameter.

Array shape Unfiorm linear array

Number of elements Tx 3
Rx 4

Antenna spacing Tx 8 mm
Rx 2 mm

Beamwidth Azimuth ±35 deg
Elevation ±4 deg

Center frequency fc 78.72 GHz
Frequency bandwidth 3.44 GHz
Sweep time 57 µ s
Pulse repetition interval 0.97 ms
Image cell xi × yj 128 × 128
Number of range bins u 1024
Number of range bins ui j 16384
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Fig. 6 Examples of polynomial fitting for a Phantom 3 trajectory.

Fig. 4 Measurement environment.

Fig. 5 Reference trajectory.

of drones as a reference for the measurement. In the x-y
plane, the squint angle of the radar was set to 0 degree, and
drones were maneuvered to fly as straight as possible, as
shown in Fig. 5(a). In the y-z plane, the elevation angle ϕ
was set to 10 degrees for Phantom 3 and 5 degrees for Mavic
Pro and Mavic Mini, and drones were controlled to maintain
the same relative altitude H. The reason for difference of
elevation angle ϕ depending on the drone is that the radar
beam was aimed at a drone to cover its rear propellers. Since
the drone was flown manually, its flight path was not strictly
straight, and its speed and relative altitude was not constant,
resulting in an irregular trajectory.

3.2 Measurement results and discussion
In order to verify how accurately the motion compensation
based on the RANSAC method works in the ISAR process,
the quality of ISAR imagery by the method is compared with
that by the least squares method which is a basic method for
data fitting. Figure 6 shows examples of polynomial fitting
for the trajectory of Phantom 3. The red lines in Figs. 6(a)
and (b) are the coarse estimate versus slow time (number of
samples), which are obtained by measuring the largest re-
flection point of drone for each snapshot. There are sudden

rises and drops that seem to differ from the actual flight path,
thus, it is very likely that these estimates contain the outliers.
The blue and green lines are the fitted curves modeled by the
least squares method and the RANSAC method, respectively.
Here, the coarse estimates are fitted to a fourth-order motion
model using each of the fitting methods. The fitting results
for the slant range are given in Fig. 6(a). We can see in this
figure that the blue curve bent more rapidly than the green
curve, as seen in the sample intervals from 0 to 250, and from
500 to 800. This is because the least squares method com-
putes an approximate model for all measurement data con-
tains outliers, decreasing the approximate likelihood. The
fitting results for the DOA are shown in Fig. 6 (b). It can be
seen from this figure that there is no significant difference
between blue and green curves because the measurement
data does not include the critical outliers. The results for the
motion model can be expressed in rectangular coordinates
with the horizontal axis as the cross range and the vertical
axis as the down range, as shown in Fig. 6(c). The coordi-
nates are transformed from the slant range (Fig. 6(a)) and
DOA (Fig. 6(b)). We can see in Fig. 6(c) that the RANSAC
method can produce the motion model which is more sim-
ilar to reference trajectory than the least squares method.
However, the actual flight path was not completely straight
due to manual control, making it difficult to verify accuracy
by comparing the motion model with the reference trajec-
tory. Thus, the estimation accuracy is evaluated by the ISAR
imaging quality which we discuss later.

Next, we turn now to show the generated ISAR images
using each motion model. Figure 7 shows the ISAR im-
ages by the least squares method. The white solid lines in
these figures are the overlays displaying the outline of each
drone. The results show that these images provide rough and
ambiguous outlines of the drones and that it is difficult to
determine the exact size and shape of each drone. Moreover,
there are ghost images at the coordinates where the drone
does not exist. This is because the motion compensation
error caused a shift of the focal point while constructing an
ISAR image. We now turn our attention to the radar image
of each of the drones by the RANSAC method, as shown in
Fig. 8. For the Phantom 3, Fig. 8(a) shows that a footprint
similar in shape to the overlay can be observed, and its ap-
proximate size can be estimated. Also, the signal strength
from the rear is smaller than that from the front. This is
both because the radar cross-section in front of the body is
large due to the camera mounted in front of the body, and
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Fig. 7 ISAR images by the least squares fitting.

Fig. 8 ISAR images by the RANSAC fitting.

because half of the rear arms is hidden by the body. For
the Mavic pro, the drone shape and its four arms are clearly
visible from Fig. 8(b). However, there are ghost images on
the right side of the drone, attributed to the motion compen-
sation errors. For the Mavic Mini, we can see a smaller foot
print corresponding to its size than other drones, as shown in
Fig. 8(c). These imaging results show that the well-focused
image generation is achieved because the motion compensa-
tion is implemented accurately. Therefore, the accuracy of
trajectory estimation by the RANSAC method is superior to
that by the least squares method.

4. Conclusions

In this paper, we proposed an ISAR imaging method based
on the backprojection algorithm using a mmW FCM MIMO
radar for drone detection. In addition, to achieve accurate
motion compensation in the ISAR processing, the RANSAC
method was employed to model the trajectory of drone. To
verify the effectiveness of the proposed method, measure-
ment experiments were conducted on three types of drones in
flight. The experimental results showed that the RANSAC
method could accurately estimate the trajectory of drone.
Furthermore, the ISAR could generate high-resolution radar
imagery with a characteristic foot print relating to the size
and shape of drone for drone detection.

Future research will focus on drone classification by ap-
plying deep learning to ISAR images.
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